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Chapter 1

Basic Concepts

Those who are not shocked when they first come across quantum theory can-
not possibly have understood it. — Niehls Bohr

1.1 The problems with classical mechanics

Towards the end of the 19th century and the beginning of the 20th century, several new
experiments were performed that could not be simply explained using classical mechanics,
and that in some cases were completely challenging the expectations based on Newtonian
physics. In this course we will not attempt to give an historical account of the development
of Quantum Mechanics, but rather present its core concepts and tools. It is however impor-
tant to know some of the most stringent experimental work that ruled out the possibility of
Classical Mechanics as a “good” theory of atoms and light. Here I choose to focus on two
experiments, that will also allows us to start developing the core concepts of the theory.

1.2 The Geiger-Marsden experiment

1.2.1 Classical atoms cannot exist

After the experimental discovery of the atomic nucleus in 1911, performed in his group,
Rutherford proposed a model in an attempt to explain the properties of the atom. Inspired
by the orbiting motion of the planets around the sun, Rutherford considered the atom to
consist of electrons orbiting around a positively charged massive center, the nucleus. It was
soon recognized that, within the context of classical physics, this model suffers from two
serious issues: (a) atoms are unstable and (b) atoms radiate energy over a continuous range
of frequencies.

The first deficiency results from the application of Maxwell’s electromagnetic theory to
Rutherford’s model: as the electron orbits around the nucleus, it accelerates and hence
radiates energy. It must therefore lose energy. The radius of the orbit should then decrease
continuously (spiral motion) until the electron collapses onto the nucleus; the typical time
for such a collapse is about 10~%s.

Second, since the frequency of the radiated energy is the same as the orbiting frequency,
and as the electron orbit collapses, its orbiting frequency increases continuously. Thus, the
spectrum of the radiation emitted by the atom should be continuous. These two conclusions
completely disagree with experiment, since atoms are stable and radiate energy over discrete
frequency ranges.

These findings led N. BOHR and others to the first formulation of quantum mechanics
(informally known as the “old quantum theory”), largely empirical, that attempted to fix
both issues. Here we will not discuss the old formulation of quantum mechanics since, while
it has great historical merit, it is entirely replaced by the modern quantum theory we will
introduce in this course and it is essentially never used in any modern application.

7
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Figure 1.2.1: Schematics of the Geiger-Marsden experiment

1.3 The Stern-Gerlach Experiment

The Stern-Gerlach experiment (1921-1922) shows clearly a physical behavior that Classical
Mechanics cannot explain. We will now describe it in a phenomenological way, and in
the next chapter we will give the postulates of Quantum Mechanics that provide a correct
interpretation of the results.

The goal of the experiment was to measure the magnetic moment of a silver atom.

In order to understand what factors can contribute to the magnetic moment, let us
concentrate for a moment on a simpler case. Consider the classical model of an hydrogen
atom: an electron orbiting a proton of opposite charge with angular momentum L. Since
the electron mass m is much smaller than the proton mass, the magnetic moment of this
system is simply given by

i, = ——1L. (1.3.1)

Now, we can imagine that we send the hydrogen atom through a magnetic field B. Since
the atom has no net electric charge, the interaction energy between the magnetic field and
the electric moment is just V = —f - B. Assuming for simplicity that the magnetic field
points in the z direction, the force acting on the atom is therefore

0 . = 0B,

F, = —ji-B~yu,
82” . 0z

(1.3.2)

In addition to the orbital angular momentum, electrons and protons happen to have an
intrinsic angular momentum or spin S. In classical terms, we could think of this degree of
freedom as a rotation around their proper axis. The spin angular momentum also induces
a magnetic dipole moment

—e -

Hs :9%57 (1.3.3)
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Figure 1.3.1: Magnetic moment of a classical hydrogen atom

where g ~ 2 (for the electron) is known as the gyromagnetic ratio, and this magnetic
moment couples to the magnetic field as before. In general, we expect that the total
magnetic moment is the sum of the spin and orbital angular momenta.

In their experiment, Stern and Gerlach used silver atoms, passing through an inhomo-
geneous magnetic field. Silver is made up of a nucleus and 47 electrons, where 46 out of
the 47 electrons can be visualized as forming a spherically symmetrical electron cloud with
no net angular momentum (both spin and orbital components). The only contribution to
the total angular momentum of the atom is due to the intrinsic spin of the 47th electron.
Thus, with very good approximation

ﬁo<§.

Because of the force (1.3.2), the SG apparatus is therefore an effective way to measure
the z component of ji, since atoms with S, < 0 will experience a downward force, whereas
atoms with S, > 0 will experience an upward force. By measuring how many atoms emerge
at which vertical position we therefore have an indirect measurement of .S, .

The atoms entering the apparatus are randomly oriented (basically, because they come
from a high-temperature source), thus we could expect that on average each atom will have
a random value of —|u| < p, < |u|. We would therefore expect that at the exit of the
SG apparatus, a vertical continuous stripe would appear. However, it is experimentally
observed that only two isolated spots appear on the screen, implying that S, can take only
two possible values. Experimentally, it is found that these two values are SZ(:JF) = +h/2

and S¢7) = +7/2, where the constant % (h bar) is a fundamental constant in quantum
mechanics (Planck’s constant) with numerical value h = 1.054571817 x 10734[J - s]. The
fact that the z component of the intrinsic spin of the electron can take only two values
cannot be explained by classical mechanics, and is already a striking form of quantization,
i.e. the fact that microscopic objects subjected to Quantum Mechanics often exhibit discrete
values when measured, rather than the continuous values we would expect from classical
theory, as in this case.

1.4 Sequential Stern-Gerlach Experiments

We now present a few Gedankenexperiment (thought experiments), that, while never re-
alized in the lab by Stern and Gerlach, allow us to understand some of the fundamental
concepts we will need to develop a full quantum theory.

To this purpose, we will use denote Stern-Gerlach experiments by the direction chosen
for the magnetic field. For example, our previous example would correspond to a SGZ
device, where the magnetic field is aligned along the z direction. We will also use an SGZ
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Figure 1.3.2: (Top) Schematic representation of the Stern and Gerlach apparatus. High-
temperature leave the furnace on the left and are collimated inside a magnet with a strong
magnetic field. The apparatus pushes electrons with positive spin upwards and electrons
with negative spins downwards. The two isolated spots appearing on the detector are an
indication of the quantization of the spin electron into two possible values instead of a
continuum of values expected from classical theory. (Bottom) Schematic representation
of the result obtained, where the SG apparatus with a magnet along the z direction is
depicted.

device, obtained rotating the original device in a way that it is aligned with the x axis
instead.

Additionally, we will consider the case in which we block one of the two beams coming
out of the SG device, see Figure 1.4.1, where the down spins are blocked after they exit an
SGZ device.

1.4.1 First Experiment

In the first of our sequential experiments, we stack two SGZ, while blocking out the down
component of the spins after the first device, see Figure 1.4.1. Assuming that N spins
emerge from the upper part of the first detector, then when they enter the second SGZ
device we observe something quite intuitive for the final measurement outcome: we observe
that all spins are up (thus with S, = +%/2) and none is found with S, = —#/2). This is
quite intuitive, since the blocking has effectively acted as a filter for the down spins.

Notice that there is nothing special associated with the Z direction. If we had carried
out the same kind of blocking experiment but with two other SGd polarizers, where d is
some arbitrary direction, the same outcome would have been observed. We just stick to
the 2 direction as a conventional reference frame.

1.4.2 Second Experiment

The second experiment is already more interesting. In this case, we rotate the last SG
device of the previous experiment, and align it in the x direction, thus we have a SGz
device, see Fig. 1.4.2. In this case, we observe that the output of the last device contains

10
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Figure 1.4.1: Experiment with two identical SG devices, and blocking one component before
entering the second device. All atoms emerge with the unfiltered state.

again two distinct beams, thus corresponding to two values of the spin Séﬂ = +h/2 and
s = —h/2. Why is this the case? One possibility might be that 50% of the SEH atom
coming out of the first device are made up of atoms with both S £+) and S;Jr) and the other

half has instead S §+) and Sg(f). This would explain the findings of this experiment, but we
will see in the following that this is not what happens.

Figure 1.4.2: Experiment with one SGZ device followed by a SGZ device, and filtering one
component before entering the second device. Both up and down spins are recorded at the
output, with equal counts.

1.4.3 Third Experiment

The last experiment is certainly the most disturbing from a classical point of view. In this
case, we simply add a further SGZ device to the previous setup, while also blocking the
Sé_) component, see Fig. 1.4.3. What observe now, is that there is again a Sg_) component
appearing at the end of the experiment, and that its intensity is identical to that of S§+).
This is very surprising from the classical standpoint, since we thought that by placing the
first filter we had already blocked all particles with Si_), however this is not the case. In
this sense, the previous hypothesis where the atoms entering the second device do not have
a Sg_) component is not consistent with this experiment.

This example is quite crucial in understanding already one of the peculiarities of quan-
tum mechanics: there are some observables that cannot be measured simultaneously.
Specifically, what happens is that the selecting the well determined value of Sgﬂ destroys
any previous information we had on the other direction of the spin. Notice that this phe-
nomenon in an intrinsic feature of these observations, and even improving the experimental
quality of the apparatus would not solve this issue.

Figure 1.4.3: Experiment with two orthogonal SGZ and SGZ filters each blocking their
down streams, followed by a SGZ device. The last device outputs two streams of equal
intensity.

1.4.4 Analogy with the polarization of light

While the results of these 3 sequential experiments cannot be explained using a simple
classical picture of classical spinning objects, we can find an analogy in classical physics

11
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Figure 1.4.4: Unpolarized light entering a sequence of polaroid filters

that can help us materialize also the mathematical tools we need to describe the quantum
world.

If you consider monochromatic light with wave vector k£ and frequency w traveling in
the z direction, then using a polarizer (for example a Polaroid filter) it is possible to obtain
linearly polarized light. We can for example have a x-polarizing filter resulting in a time-
dependent electric field:

E _ Eo.’%ei(kZ7Wt),
or a y-polarizing filter resulting in
E" — Eogei(szwt).

If we stack two of this filter in a sequence, then the resulting amplitude will be proportional
to the scalar product of the two polarization vectors. If we have an x-polarizing filter
followed by a y-polarizing filter, then it is well known that no light will come out of the last
filter.

If we now insert a third filter in the middle, polarized along a direction we call ' and
forming a 45 degrees angle with the x axis, then there is again light coming out of the filter.
A similar result would be obtained placing a y’ filter forming a 90 degree angle with z’, in
the plane. The intensity of light can be reconstructed considering the electric fields coming
out of the rotated intermediate filters. They read, respectively,

Boeihz=wDz/ = Fyeilkz—wt) (x + y) :
0 ’ V2 V2

E ei(k:szt) i = E ei(kZ*Wt) (i‘ + ?j) ,
e = B VAR

thus if we place an 2’ filter in the middle, then there will be a finite component in the
direction that will in turn lead to a finite light intensity at the end of the 3 filters.

This situation is analogous to what seen in the last SG experiment, in the sense that
despite the first z filter has selected a certain polarization, the second filter “resets” this
information and rotates the electric field in a direction that has now a finite g direction,
that can be detected in the last step.

We can therefore think of an analogy between these results with polarizers and those
obtained with SG. Specifically, these correspondences lead to similar results in both cases:

] Spin state \ Polarization state ‘

S&H X
s y
Sg(c+) ¥ = % + %
5 y = -5t %

12



1.4. Sequential Stern-Gerlach Experiments

Applying these correspondence relations, we can further argue that the state of the
quantum spin could be described by some two-dimensional vector, as much as the results
of the light polarizers can be described at all stages, using the x and y components of the
electric field. These two-dimensional vectors though live in an abstract state space rather
than the physical space of the electric field. We therefore postulate that the Sg(c+) and S:(E_)
are described by vectors that are linear combinations of S’gﬂ and ng):

S = =[S +5e).
S = %[@HH@H]

In this sense, we can see that when the state S—’; (4) emerges from the second SG apparatus
(remember that we have blocked S_’; (—)) it contains components of both S—’: (+) and S—’: (-)
so that when the last apparatus measures the two components, it will find a finite intensity
for both Z+ and Z-.

Finally, we can also address the question of representing the quantum state correspond-
ing to Sy (+) and S,(—). Indeed, we can always think of doing experiments including SGy
apparata, with the magnetic field of the detector aligned along the y direction.

For symmetry reasons, we can expect that the situation is analogous to our study of the
z —x case, in the sense that we also expect Sy (4/—) to be linear combinations of S, (+/—)
. Another analogy with light polarization is helpful here. In general, the electric field of a
polarized beam propagating along the z axis can be written as

E = Eoei(szwt) (ij + ezq&g) ’

where ¢ is a phase difference, and the complex-valued components in the x and y directions
are known as JONES vectors.

Circularly polarized light is the other relevant case of light polarization we haven’t
considered yet, thus it is the natural candidate for the last correspondence. Specifically,
the electric field of right circularly polarized light and left circularly polarized light can be
written as:

E = F ei(k:szt) <‘% + iA) ,
R 0 V2 V2!
Ep = Egeilkz=wt) (I - Z) .
" ’ V2 \/§y

The analogy we were missing is thus

’ Spin direction \ Polarized light ‘

AR R=% +i%
S5 L=2—iY%

and we can therefore postulate that

54 = = [S+Ee).
S = 5 [ -iEe).

1.4.5 Beams intensity

So far, we have not discussed the problem of determining the bean intensity (i.e. how
many atoms are recorded in each of the SG experiments). Also in this case, the analogy
with classical optics is illuminating. In the case of light polarizers, the intensity is found
taking the modulus squared of the electric field, at the exit of the filters: I = |E,|?>+|E,|?.
Amazingly, the same rules apply also for the quantum spin.

13
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1.5 What we learned

From this analogy with optics, we have already discovered several important (and more
general) features of quantum physics:

1. Quantization of the observables: contrary to what expected in the classical case, each
of the three components of the spin S, S,, S, can only take integer values +//2

2. Indeterminacy of measurements: some observables (for example S, and S,) cannot
be measured simultaneously.

3. Superposition: like for waves, a quantum state is a superposition of different elemen-
tary states.

4. State vector: quantum states are described by complex vectors in an abstract state
space

5. The average of a quantum measurement is found squaring the components of the
quantum state vector.

In the next Chapter, we will mathematically formalize these findings, and set up the tools
that will allow us to we need to study quantum phenomena. It is also important to stress
here that while the analogy with classical optics is enough to introduce the basic concepts
of quantum mechanics, the abstract state space (Hilbert space, as we will see soon) of
quantum physics is dramatically different from the state space of electric fields, especially
when dealing with composite quantum systems (studied in the last Chapter).

References and Further Reading

1. J. J. Sakurai and J. Napolitano, “Modern Quantum Mechanics” (2017), Chapter 1.1

2. R. P. Feynman, R. Leighton, M. Sands, “The Feynman lectures on physics - Vol. III”
(1965), Chapter 1

3. W. Gerlach, and O. Stern, “Der experimentelle Nachweis der Richtungsquantelung
im Magnetfeld. Z. Phys. 9, 349-352 (1922)
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Chapter 2

Axioms and Tools

This Chapter contains the mathematical basis of the general concepts seen in Chapter 1.

2.1 Axiom 1: State Vectors

In quantum mechanics a physical state—for example, the spin of an electron—is repre-
sented by a state vector in a complex vector space. The dimensionality of this vector space
in general is unrelated to the physical dimension of the system in exam (say, the famil-
iar 3-dimensional space of classical mechanics coordinates, for example) but instead is an
abstract space. In Stern-Gerlach—type experiments where the only quantum-mechanical
degree of freedom is the spin of an atom, the dimensionality is determined by the number
of alternative paths the atoms can follow when subjected to a SG apparatus; in the case of
the silver atoms of the previous section, the dimensionality is just two, corresponding to the
two possible values S, can assume. Later, we will consider the case of continuous degrees
of freedom—for example, the position (coordinate) or momentum of a particle—where the
number of alternatives is infinite, in which case the vector space in question is known as a
HILBERT space.

Following DIRAC, we call a vector in this space a ket and denote it by |[¢) = E) This
state ket is postulated to contain complete information about the physical state; everything
we are allowed to ask about the state is contained in the ket.

Essentially, for finite-dimensional spaces, quantum states obey familiar linear algebra
properties.

2.1.1 Properties of a vector (Hilbert) space:

1. It is a vector space over the complex numbers C. Vectors in this space are conven-
tionally called kets and denoted by [¢) .

2. The dual of kets are called bras and denoted by (¢]. In the following we denote the
dual correspondence with <+, and the following relations are postulated

) < (Y
cl) <+ (Y|, (2.1.2)

thus kets correspond to bras, and a constant ¢ times a ket corresponds to a bra times
the complex conjugate of that constant, ¢*. Informally speaking, for finite-dimensional
spaces, kets correspond to column vectors (n x 1 matrices), and bras correspond to

—\ T
row vectors (1 x n matrices) . In this case bras thus correspond to (¢| = (w) , where

1 denotes the conjugate transpose of the vector.

3. It has an inner product (¢|¢) that maps an ordered pair of vectors (in this case to a
complex number), and that has the properties:
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2. AXIoMS AND TOOLS

a) Positivity: (i[ip) > 0 for |3) # 0.

b) Linearity: (¢[(alt1) + b)) = alplvr) + blol2)
¢) Symmetry: (o) = (|p)* , where the * denotes complex conjugation.

Notice again that all these three properties are very natural for complex vectors, once
the inner product is identified with the usual dot product: (¥|¢) = - ¢.

2.1.2 Quantum states are rays

What is a ray? It is an equivalence class of vectors that differ by multiplication by a nonzero
complex scalar. For any nonzero ray, we can by convention choose a representative of the
class, denoted [¢), that has unit norm:

(Wly) =1, (2.1.3)

and all other states obtained multiplying this state by an arbitrary non-zero constant rep-
resent the same physical state:

)y = ). (2.1.4)

Since every ray corresponds to a possible state, given two states |}, |¢), another state can
be constructed as the linear superposition of the two:

[Y") = alp) +bly). (2.1.5)

Notice that the global phase of the state is irrelevant, thus e*®|¢)') = |[)'), because of Eq.
(2.1.4). The relative phase in this superposition is however physically significant. For
example, the state a|¢) + b|p) is the same ray as e'*(a|p) + b|y)) but it is different from
ale) + eby).

2.2 Operators

Operators are the natural companion of state vectors. They are the tool used to do all phys-
ically meaningful manipulations of a quantum state. In the following, we denote operators
with A, to distinguish them from scalars. An operator acts on a ket from the left,

Alw) = A, (2.2.1)

resulting into another ket. In the familiar case of finite-dimensional vector spaces, operators
are nothing but matrices acting on vectors. Thus the action of a matrix onto a vector results
into another vector. In the more general case of Hilbert spaces, observables are linear maps
taking vectors to vectors:

) Ay — A\}m A (2.2.2)
Alaly) +blg)) = aAlY) +bA[9). 2.2.3

2.2.1 Eigen-Kets

In general when an operator acts on a ket, it produces a distinct ket. However, there are
special cases in which the application of an operator leads to a constant times the initial
ket. Those are known as eigen-kets, |A1), |A2), |As), ...|]A,), and have the property that

AlA) = al]A) (2.2.4)
A|A2> = a2|A2>
AlA,) = anlAn),

where the action of the operator is to return the same kets multiplied by scalars (in general,
complex-valued) a1, as, ... a,. Those are eigenvalues of the operator A, and the correspond-
ing states | A1), |Aa), ... |Ay), are eigen-kets. Again, for finite-dimensional spaces the notion
of eigen-ket is strictly equivalent to that of eigen-vectors in linear algebra.
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2.2. Operators

2.2.2 Adjoints and Hermitian Operators

The adjoint of the operator is denoted as A" and is defined by the dual relationship
Alp) & (@A, (2.2.5)

for all states |1)). A special class of operators is that of Hermitian operators fl, for which
A = At. As we will clarify in the following, Hermitian operators in quantum physics play
an important role in the measurement process.

Theorem 1. An Hermitian operator satisfies (¢|Alyp) = (| A|¢)*.

Proof. By the symmetry property of the inner product we have A<¢‘A|’L/J> :A<<b|12h/}> ;
(pAlp)*. By the definition of adjoint, we have that the dual of [Ay) « (Y|AT = (pA
thus (¢|Aly) = (| AT|¢)*. If A = AT then (¢ Aly)) = (¥|A]¢)*.

The spectrum of eigenvalues associated with Hermitian operators has special properties,
as given by the following Theorem.

Theorem 2. The eigenvalues of an Hermitian operator A are real valued. The eigen-kets
of A corresponding to different eigenvalues are orthogonal.

Proof. Consider
AlA) = a;]Ay), (2.2.6)
and its dual equivalent (for some other eigen-ket j5) :

(A;|AT = (Aj]as (2.2.7)
—=(Aj|A, (2.2.8)

where the last line follows from the the fact that the operator is Hermitian. Multiplying
the first equation on the left by (A;| and the second equation on the right by |A;), and
subtract the results we get

(A;]4i)(ai —aj) = 0. (2.2.9)

In the case in which ¢ = j (same eigenvector), we then must have a; = af, thus the eigen-
values are real. In the case i # j, under the theorem assumption that the the eigenvalues
are different (and real, because of the just proven result), we have that (a; — a;) # 0, thus
the only possibility to satisfy equation (2.2.9) is that (4,]A;) = 0, thus the two eigenvectors
must be orthogonal. O

In the following we will assume that the eigen-kets of operators are taken to be orthonor-
mal, i.e. satisfy the condition

(A|4:) = 4y (2.2.10)

Notice that this condition can always be enforced, because of the orthogonality condition
of the previous theorem and because, as we have seen before, the normalization of each | A;)
is arbitrary (we can thus take it to be 1).

2.2.3 Representing state kets with eigen-kets

Choosing an operator A and forming its eigen-kets is in general a very important concep-
tual and practical step needed to represent arbitrary ket states. We will use eigen-kets of
operators as base kets to expand arbitrary kets, as much as for an Euclidean space one uses
orthogonal unit vectors (coordinates) to represent an arbitrary vector.
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2. AXIoMS AND TOOLS

Concretely, an arbitrary ket |¢) can be represented as a linear combination of eigen-kets
of some operator A in this way:

l) = Zci|Ai>v (2.2.11)

%

where the complex-valued coefficients ¢; are to be determined. Multiplying (2.2.11) on the
left by (A;| and using the orthonormality condition, Eq. (2.2.10), we obtain

The expansion coefficients ¢; (often referred to as amplitudes of the state on the eigen-kets
of A) are then formally computed as an inner product of a bra (4;| with a ket |¢). We also
notice that the normalization of the state reads

(W) = Z<Aj|C;Ci|Ai>:Z|Ci|2v (2.2.13)

ij

thus an equivalent condition for the state to be normalized is that (p|¢) = Y, [¢;|* = 1.
We can also rewrite the expansion in Eq. (2.2.11) as

) = 2 1A (Ail). (22.14)

Very interestingly, we can interpret P; = |A4;)(4;| to be an operator acting on ket [¢), from
which we also deduce a very important relationship called completeness relation or closure:

Z A4l = 1L (2.2.15)

This relation follows from Eq. (2.2.14), that must be verified for arbitrary [¢)). The operator
A; = |A;)(A;] is also an important tool in quantum mechanics, and it is known as projector
operator, since it projects an arbitrary state vector onto a certain eigen-ket i of A.

Exercise 3. Show that the projector operator satisfies [\f = AZ

2.2.4 Matrix Representation

The projection operator previously introduced is also important to highlight the direct
connection between operators and matrices. Specifically, given an arbitrary operator B we
can insert the completeness relation twice:

B o= ) A4l B (2.2.16)
= Y ANABIA A, (2.2.17)

ij

and identify B(i,7) = (Ai|B|Aj> as the matriz element of the operator B in the basis of
the eigenkets 7 and j of A. We can then explicitly write B as a N x N matrix with elements

(ABIAY)  (Ai[BlAs) ... (Ai]B|A,)
B = <A2|B|A1> <A2|B|A2> <A2|B|An> , (2.2.18)

where we have assumed that the dimensionality of the vector space is finite and equal to n.
For example, for our spin 1/2 case, we have that the dimensionality is n = 2.
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2.2. Operators

This explicit matrix representation also allows to better clarify the concept of Hermitian
conjugate (adjoint) operator AT, since the result of Theorem 1 (namely (¢|B|y) = (4| B|¢)*
is true if B is an Hermitian operator) directly translates into a condition for the matrix
elements

B(i,j) = B(,1)",
thus for finite-dimensional Hilbert spaces an Hermitian operator is nothing but an Hermitian
matrix.
Further notice that the representation of the operator A itself in its eigen-ket basis is
nothing but a diagonal matrix, whose elements are the eigenvalues, i.e. A(7,j) = d;5a;. It
also immediately follows that A = > aqlAg) (Aql.

Example 4. Dirac’s notation is a powerful way of writing expressions involving linear
operators. For example, consider the case of an operator D= BC then the matrix elements
can be obtained using again the completeness relation:

D(i,j) = (A|BC|A;) (2.2.19)
= ;<Ai\B|Ak>h<Ak\ClAj> (2.2.20)
= > BG.KC(k,J), (2.2.21)

k

which correspond to the usual notion of matrix multiplication.

2.2.5 Finding eigen-kets

The explicit representation of operators in terms of matrix elements is also very useful to
explicitly find eigen-kets and eigenvalues, given a certain operator. Let us consider again
the matrix elements of the operator B in the A basis, namely: B(i,5) = (A;|B|A;). The
eigenvalue equation is

B|By) = bi|By), (2.2.22)
for the unknown by and |By). We can rewrite this as
B|By) = bilBy) (2.2.23)
BY |A;)(A;Br) = bi|By) (2.2.24)
>
(Ai|BY |A;)(A;|Br) = bie(Ai|By) (2.2.25)
J
> (Ai|BIAj)(AjBr) = bi(Ai|By), (2.2.26)
J
which in matrix notation is
(A1|BlA) -+ (A1 BJAY) (A1[Br) (A1[Br)
: : : = b : , (2.2.27)
(An|BlA1) -+ (An|B|A,) '\ {An[Be) (An|Bk)

M P0)
thus the eigenvalues are found, as in standard linear algebra, as solutions of the equation
det(M — b D) = 0, (2.2.28)
and once the by are found, we solve the homogenous linear system
(M — b )7 = 0, (2.2.29)

for the unknown vectors #®). This procedure is described in detail in all linear algebra
books.
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2. AXIoMS AND TOOLS

2.3 Axiom 2: Measurement

We now come to one of the most fundamental, yet counterintuitive (because it wildly departs
from the classical world) axioms of quantum mechanics, related to how a measurement is
performed. Quite generally, a measurement is a process in which information about the
state of a physical system is acquired by an observer. An observable is a property of a
physical system that in principle can be measured. Such property could be for example
momentum and spin components, etc. In quantum mechanics, it is postulated that an
observable is represented by an Hermitian (also known as self-adjoint) operator acting on
the vector space of quantum states. The fundamental axiom of quantum mechanics (that
cannot be proven) is that the measurement of an observable A prepares an eigenstate of the
hermitian operator A, and the observer learns the value of the corresponding eigenvalue.

In essence, let us assume that we have a certain quantum system described by a ket |¢),
whose expansion in the eigen-kets of A reads

l) = Zci|Ai>7 (2.3.1)

K2

where, as shown before, the expansion coefficients (amplitudes) are ¢; = (A;]¢). We also
assume here that the state |¢) is a ray chosen to be normalized, thus Y, |¢;|? = 1.

The measurement axiom means that when we measure the operator A, the state )
immediately collapses into one of the possible eigenstates |4;) of A, and the result of that
specific measurement will be the associated eigenvalue, a;.

The most important aspect of the measurement process, is that which of the several
eigen-kets is obtained is determined only probabilistically. Specifically, we say that the
outcome a; for the measurement is obtained with a priori probability

Prob(a;) [(As]¥)]?
|2

= o
(| As){Ail), (2.3.2)

known as BORN’s probability rule, introduced by Max Born in a seminal 1926 paper. We
can immediately verify that the probability defined by Born’s rule is a bona fide probability,
in the sense that it is correctly normalized:

ZProb(ai) = Z|Ci\2 (2.3.3)

() (2.3.4)
= 1, (2.3.5)

where the last equality comes from the normalization condition of the state |¢).

2.3.1 Repeated measurements

If many identically prepared systems are measured, each described by the same state [t)),
then the expectation value of the outcomes is what you would expect from standard prob-
ability theory, namely

(A) = ZaiProb(ai) (2.3.6)

= D (A (Aiy) (2:3.7)

= i(wlfllAMAz'lw (2.3.8)

= <1;|AZ|A1><AZ-¢> (2.3.9)
—

= (YIA[y). 1 (2.3.10)
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2.4. Analysis of the Stern-Gerlach experiments

The latter equation is one of the most important equations of quantum mechanics, since
it relates the average result for repeated measurements to the quantity (1/)\/1|w>, known as
the “expectation value” of the corresponding operator.

It should be understood here that by “repeated measurement” we mean, strictly, prepar-
ing the state |[¢)) several times, and each time measuring the observable A. Each observation
k=1,2,...M will result in a random result 7, € {a1,...a,}. An experimental observer
can then estimate (A) with the simple mean

(4) =~ %Zrk, (2.3.11)
k

and in the limit M — oo this will coincide with the computed expression (1| A[1)).

A dramatically different scenario is instead obtained if we prepare the state |¢) only
once, and we perform a measurement over the same state over and over again. In this case,
after the first measurement, the state will collapse to a corresponding random eigen-ket,
say

[) measurement |A;), (2.3.12)

with probability P; = |(A;]1)|?, and resulting in the value a; for the measurement outcome.
However, since the new state resulting from the measurement is just an eigenstate of the
measurement operator, we have that the new state has ¢, = 1, thus if we measure the
operator A again, the result of the measurement will be again a;, with probability 1, a
deterministic measurement!

2.4 Analysis of the Stern-Gerlach experiments

Having introduced the most fundamental postulates of quantum mechanics, we are now in
position to resolve one unsatisfactory argument that we had to introduced at the beginning
of these lectures: the form of the eigenstates of the spin operators.

First of all, it is very important to realize that the kind of experiment we are analyzing
here falls under the second type described above (what we have called, repeated measure-
ments). The reason is that the SG apparatus does not measure the spin of an individual
electron, but rather of a large number of electrons at once. Schematically, we can think
that independent electrons pass through the analyzer and each of them is deflected either
upwards or downwards. What we are doing then is essentially equivalent to preparing the
same state and measuring many times.

2.4.1 The operator S,

When we measure the z component of the spin in our SG apparatus, we postulate the
existence of a corresponding measure operator that we call SZ. When the spin is measured
along the z direction, the system will then immediately collapse in one of the two eigen-kets
of this operator: |+) or |—), and the result of the measurement will be, respectively, one
of the two eigenvalues of the S, operator, thus either a, = +%/2 or a_ = —h/2. In order
to find an explicit expression for the spin operators, we start observing that the identity
operator for a 2-dimensional finite vector space can be written as

T o= [+ = (24.1)
and the representation of S, in the basis of its eigenvectors is just
A h
S: = (R = 1=)=D)- (24.2)

The operator is also just a 2 x 2 diagonal matrix in this basis

X {1 0
S, = 2<0 _1), (2.4.3)
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2. AXIoMS AND TOOLS

and the notion of eigen-kets being wvectors is particularly clear when writing them as the
algebraic eigenvectors of this matrix, namely

) = (é) (2.4.4)

=) = <(1)> (2.4.5)

This also clarifies why we have previously remarked that kets are column vectors, whereas
bras are row vectors:

2.4.2 The operator S,

From Fig. 1.4.3, we have seen that when a beam of type |S;;+) goes again through a
S, measurement, the beam is deflected in both directions, and we that that the counts
observed in the SG experiment are equal: N(4) = N(—). This means that, in general,

1 1
—18 il
V2 V2
where ¢ is a real-valued phase that we will determine in a moment. You can verify that
this form is correct because:

|Sz;+) = )+ 6i61‘52;_>’ (2.4.8)

1. When measuring S, in the last stage, we apply the operator S'Z, thus the state collapses

N 2
to one of the two eigenstates of S,, with equal probabilities P(+) = ‘%‘ = % and
2

1
5 -

P(-) = ‘%ei‘sl

2. The state (2.4.8) is a correctly normalized ket, indeed: (S,;+|S5;+) = 1, as it is easy
to verify.

We can also find |S,; —) only using the postulates we have introduced above. Indeed, we
know that different eigen-kets of the same operator are orthogonal, thus we must have
(Sz;+|Sz;—) = 0, as well as (S,;—|Sz; —) = 1, these two conditions fix the form of the
other eigen-ket:

1 1 .
S’f = 75;4*7761515‘;*, 249
|85 =) \@I 2 +) 7 825 =) (2.4.9)
Now, it should be remarked that using only the results of Experiment 3, we cannot determine
the value of the phase factor d, since the information we have from the counts allows us only
to reconstruct the square modulus of the amplitudes, and not the amplitudes themselves.
To find §; we need more information.

Efi==

Figure 2.4.1: Experiment with two SG devices aligned in the x and y directions, respectively
and blocking one component before entering the second device. All atoms emerge with
the unfiltered state. Notice that in this case atoms exiting the furnace arrive from the z
direction.
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2.4. Analysis of the Stern-Gerlach experiments

2.4.3 The operator S'y

A similar analysis can be carried out for the y component of the spin, leading to:

|Sy; &) 2 +) ei62|sz?7>v (2.4.10)

Suit) £
xf V2
where we have introduced yet another phase factor, d2, to be determined. In order to
determine both phase factors, we consider the experiment as in Fig. 2.4.1. This class of
experiments gives the same that was found before when considering the z and x directions,
and not surprisingly so, because of symmetry reasons. This however implies that

1
[(Sai +1Sy: ) = [(Sai +1Sy5 ) = 5, (2.4.11)

when blocking the x— component of the spin (as in Figure) and
2 2
(Sas =Sy P = [(Sas =18y —)° = 5, (2.4.12)

when blocking the z+ component of the spin. These conditions allow to fix the phase
factors, indeed we find the condition

|(S; £|Sy; +)° = ‘(<527+| + —e (S > (2.4.13)
Y \[
1 1 4 ?
— |5 +) + —=e"2|S,; — 2.4.14
(gl + Je®1s.i-)) (2.414)
2
1 1.
= |( £ 5e®m) 2.4.1
’(2 5¢ (2.4.15)
1
= 5 2.4.16
3 (2.416)
which has a solution for 8y — d; = £m/2, since e*'2 = =+, thus |1(1 Fi)[* = 1. While the

phase difference is physical, there is no way (but for conventional reasons) to fix separately
01 and d3. The usual convention is to take 7 = 0 and 3 = 7/2, yielding:

S0 %) = %|SZ;+>1%ISZ;—>7 (2.4.17)
Sy;£) = %I&;Hi%l&;—% (2.4.18)
The corresponding operators are
S = DS (Su ] — 12 ) ) (2.4.19)
= (S 184 )i ), (2.4.20)
and
Sy = DS S+~ 18 )5y ) (24:21)
= (1SS ] 18 )i ). (242
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2.4.4 Pauli matrices

Putting together the results we have found for the three spin operators, we can finally also
compute the corresponding matrix representation of these operators. They read:

5 h(io 1

S, = 2( - ) (2.4.23)
A hif0 —i

. h(i1 0

S = 3 < 0 1 > (2.4.25)

The matrices that appear in these equations are very famous, and called Pauli matrices
Oz, 0y,0, such that S, = g&a.
2.5 Commuting Observables

Two observables A and B are said to be compatible when their commutator [A,B] =
AB — BA is vanishing, i.e.

[A,B] = o, (2.5.1)
and incompatible when
[A,B] # o. (2.5.2)

Considering our spin example, we see that S, and S, are incompatible, since

©a R 0 1
[S:,8:] = 2(_1 0) (2.5.3)
h
= ihS,, (2.5.5)

whereas 52 = 52 + S; + $2 is compatible with S, (and the other spin operators along the
other directions).
Why do we make such a distinction between compatible and incompatible observables?

Theorem 5. Suppose that A and B are compatible observables, and the eigenvalues of A
are non-degenerate. Then the matriz representation ofB is diagonal in the basis of A, thus
(A;|B|A;) = 6;;b;, where the lower script A here denotes that the matriz elements are w.r.t.
to the eigenkets of A.

Proof. Using the fact that A and B commute, we have

(A][A,Bl|A)) = (A)|AB — BA|A;) (2.5.6)

= (a; — ay) (Ai| B|4;) (2.5.7)

= 0, (2.5.8)

thus (A;|B|A;) must vanish for i # j. O

Important consequence of this theorem is that |A;) and |B;) are eigen-kets of both A
and B. This can shown using the fact that B is diagonal in the A eigen-basis, thus the
decomposition

B = Zbi\Ai><Ai|7 (2.5.9)
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2.6. Non-Commuting observables

holds, which immediately implies that if we apply this operator to an eigen-ket of /1, we
get

BIAj) = > bilA)(4]A;) (2.5.10)
_ Ay, (2.5.11)

thus it is an eigen-ket of B, and we also identify the diagonal matrix elements as the
eigenvalues b;. In general, when a certain ket is an eigen-ket of more than one operator, we
typically denote it as |A4;, B;) or, often, with a collective name |K).

Fundamental consequence of the commutativity of observables is therefore that the
measurement process in this case is familiarly similar to what would happen in the classical
case. For example, imagine again a state |¢), and that we measure the observable A, then
the result of the measurement will yield some random value a; and the state will collapse
in the corresponding eigenstate |A;). Measuring now B will result in the value b;, with
probability 1 (recall that |A;) is also an eigenvalue of B). Further measuring A would again
return a;, thus the measurement done with B has not destroyed (or affected in any way)
the state of the system, as per the observable B is concerned.

This is a familiar situation in classical mechanics, in the sense that we can expect to be
able to measure different quantities (say, velocity and position of a particle, for example)
without changing the state of the system itself. This notion however breaks dramatically
when considering non-commuting observables.

2.6 Non-Commuting observables

We now consider the important case in which observables are not commuting, thus [/1, é} #*
0. In this case, A and B do not share a set of common eigen-kets.

Theorem 6. When [/i, B] zé 0, then it is not possible to find, in general, a complete set of
simultaneous eigen-kets of A and B

Proof. Let us suppose that the converse is true, then we have that AAAB|AzBZ> = A@AAiBi) =
all eigen-kets 7, then this implies AB = B A, which is in contradiction of the assumption. [J

2.7 The uncertainty principle

In Sec. 2.3.1, we have analyzed the case of repeated measurements, and came to the
conclusion that expectation value of a given operator over many experiments is given by:

(4) = (@lAj). (2.7.1)

In addition to the expectation value, we can also compute the variance associated with the
measurement of the operator. To this end, we introduce the displacement operator defined
as :

AA = A— (A, (2.7.2)
such that the expectation value of its square is the variance:

a4 = (wl (A- i) ) (27.3)
(W A%[) — (¥l Ajp)*. (2.7.4)

This variance really measures how much the outcome of a given measurement is different
from its average, exactly following the definition of variance in statistics. For example, if

25



2. AXIoMS AND TOOLS

you take the case in which |¢)) is an eigenstate of A (say |A4;)), it easy to see that

(AA?) = (A;]A%4;) — (4;]A|A;)? (2.7.5)
= A? —(4)? (2.7.6)
= 0, (2.7.7)

thus we recover the fundamental measurement postulate, telling us that if we repeatedly
measure an eigenstate, we always find the same result (we have zero variance).

The uncertainty principle is an important result connecting the amount of intrinsic
uncertainty (variance) associated with the measurement of two observables. It states that,
for two observables A and B, we have :

(24%)(a8% > L [(4, B)| (2.73)

| =

Before proving it, let us discuss the consequences of this inequality. There are two cases:

1. The two observables commute, thus [A, B] = 0. In this case, then there is no intrinsic
limit on the precision we can attain when measuring the two observables on the same
state. (AA?) and (AB?) can be as small as we want.

2. The two observables do not commute, thus [A,B] # 0. In this case, there is an
intrinsic limit on the precision we can attain when measuring the two observables.

In order to prove Eq. (2.7.8), we first need two intermediate results.

Theorem. The Cauchy-Schwarz inequality
() (B18) > [(alB)]?, (2.7.9)

which is a generalization of the triangle inequality to other metric spaces with a given inner
product.

Proof. The inequality can be proven in a variety of ways. Here we consider the ket
ICx) = o)+ AIB), (2.7.10)

obtained as a linear combination, with complex A, of the two given kets. The norm of this
ket is obviously positive, thus

(CAICx) = (el + (BIA) (|a) + AIB)) (2.7.11)
= (ala) + (Bla)A* + (al )X + [X*(BI8) (2.7.12)
> 0. (2.7.13)

This inequality holds for all values of A, and the Cauchy-Schwarz inequality is found con-
sidering A = —(B|a)/(B|B), since we have

(ala) = {alB)?/(B1B) = 0, (2.7.14)
which proves the original inequality (notice that the case in which (8|8) = 0 can be easily
proven separately). O

Using the Cauchy-Schwarz inequality, with

a) = AAly) (2.7.15)
8) = ABly), (2.7.16)

we get
(AA%)(AB%) > |($|ABAA)?, (2.7.17)
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2.8. Change of Basis

where we have used the fact that the displacement operators are Hermitian. We now
evaluate the r.h.s noticing that for two arbitrary hermitian operators we have

010, = %[ohog] + % [0,.0,). (2.7.18)
‘We also notice that

Re((101,02)) = 3 ({101,05]) +{[01,0:))") (27.19)
= % ((Olo2> - <0201> + <0102>* — <0201>*) (2.7.20)
= 0, (2.7.21)

and
Im (<{01702}>> = % (<{Ol’02}> - ({01702})*) (2.7.22)
= % <<Olé2> + <0201> - <0102>* — <0201>*) (2.7.23)
= 0, (2.7.24)

thus
WISBERAWP = ({|@EASEN[ +|«FAsB[]  er)
- s+ jwsazml ], (2.7.20

thus omitting the second term, we get the uncertainty inequality.

2.8 Change of Basis

Non-commuting operators define a set of distinct eigen-kets and eigenvalues that can be
independently used to describe the same physical system. For example, consider two oper-
ators A and B with eigenvalues a;,b; and eigen-kets |A;),|B;). We therefore have the usual
eigenvalue relations:

AlA) = ailAy) (2.8.1)
B|Bi) = bi|B),

with the orthonormality condition
(Ai|Ajy = & (2.8.3)
(Bi|B;j) = i (2.8.4)

Since they both form a complete basis for our vector space, it means that an arbitrary ket
state can be written either as

v = Yol (285)

or

W) = Do dslBy). (28.6)

Notice that the physical state here is exactly the same, what changes is just how we are
mathematically representing it. In quantum physics it is very often necessary to relate
different representations, we thus need to have a way to go from one basis to the other.
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2. AXIoMS AND TOOLS

This is again something that is standard in linear algebra, however it is worth recalling it
here using the bra-ket formalism.

The main result is that there is a unitary operator U that connects the two representa-
tions. More specifically,

1Bi) = UlA:), (2.8.7)
and unitarity here means that

ot = U0 (2.8.8)
i

The operator U in bra-ket notation takes a very elegant form

Z | B;) (41, (2.8.10)

which can be verified computing the explicit action of this operator on both the eigenstates
of A and B. For example, we have:

UlA) = Z|B ) (Aj|A;) (2.8.11)
——
dij
= |B;), (2.8.12)

and the inverse transformation is found using the conjugate operator

Uf|B;)) = Z|A B|B (2.8.13)
5”
= A, (2.8.14)

where in both cases we have used the orthonormality conditions, Egs. (2.8.3) and (2.8.4).
It is also straightforward to verify that the operator is unitary, using the completeness
relations for B:

oot = Do IB(4l <Z|Ak><Bk|> (2.8.15)
j k

= D IB)) (4;]Ak)(Bx] (2.8.16)
ik o

Z | B;)(B;] (2.8.17)
= 1 (2.8.18)

and A:

00— (S (z |Bk><Ak|) 2519)
j k

Z\A (B, |Bk (Ag (2.8.20)
671‘

Z |A;) (A (2.8.21)

= i (2.8.22)
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2.8. Change of Basis

In the basis of A we can also work out the matrix elements of the operator U

(AilU14;) = (Al (Z |Bk><Ak> |4;) (2.8.23)
k

(4i| Bj), (2.8.24)

there the matrix elements are just the amplitudes, or scalar product, between the two sets
of eigenstates. Similarly, the matrix elements of U in the B basis are

(Bi|U'|B;) = (B (Z |Ak><Bk> |B;) (2.8.25)
k

(Bil4;), (2.8.26)

thus

(Aol4;) = ((BiIT1BY) (2.8.27)

2.8.1 Transforming States

Given an explicit form for the transformation matrix, U , we are therefore in position to
solve the problem of finding the coefficients (amplitudes) of a given state in a certain basis
(say, |B;)), once its coefficients in another basis, say |A;) are known. We have

d; = (B;l¥) (2.8.28)

(Bj| (Z Ck|Ak>> (2.8.29)
k
> (BjlAk)ex (2.8.30)

k

> (B |U|By)ex (2.8.31)
k

2.8.2 Transforming Operators

Similar rules can be derived to transform matrix elements of operators, when passing from
one representation to another. For example, we can derive rules to obtain matrix elements
of a certain operator in two different bases:

(Ai|014;) — (Bi|O|By).

This is
(Bi|OIB)) = (Bi|>_|AN(AI O |A) (Al B;) (2.8.32)
l k
I i

= > (BilA){A|O|Ak)(Ak| By) (2.8.33)

Lk
= Y (AU A (AOLAR) (Ax[T14;), (2.8.34)

lk

which can be written also as a matrix multiplication

Oy = UlyOwmUia. (2.8.35)
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2. AXIoMS AND TOOLS

2.8.3 What’s changing? States or operators?

We have seen that the unitary matrix corresponding to the rotation operator U can be used
either to transform states or to transform operators. The two point of views go as follows:

1. On one side, there is only one observable (/1) and measurements of some other ob-
servable (say, B) are obtained rotating the state vector to the corresponding new
references basis. In this case then one first prepares a state [¢p) = Ule), and then

measures A on the new state, such that
(B) = (yYplAlp). (2.8.36)

2. On the other side, there is only one physical state (|))) and measurements of different
observables, for example of B, are found applying distinct measurement operators on
the reference state. Thus we have B = UT AU, and

(B) = (4|By). (2.8.37)

The two formulations are completely equivalent, and it is often the application that tells
us which way of thinking makes solving a certain problem easier. When studying time
evolution, we will see more prominently what the differences between these two formulations
can give us in terms of intuition on the physical systems. In that context, we will identify
the first viewpoint as Schroedinger’s view on quantum physics, and the second one as
Heisenberg’s viewpoint.

2.8.4 Example: measurements in different spin bases

As an example, we can compute the matrix elements of the transformation matrix connect-
ing the S, basis to the S, basis. The transformation operator is

> 1800 (S.11l, (2.8.38)
==+

and recalling that |S,; +) = f|SZ, +)+ %|Sz; —), we have that the transformation matrix

has the following matrix elements in the S. basis:

- ()

This transformation matrix is of fundamental importance, for example, in quantum com-
puting and it is also known there as HADAMARD gate. It has the property UUt = 1, as we
expect from the general properties of the transformation matrices.

Measuring the S, operator can be done then in one of two mathematically equivalent
ways:

1. There is only one spin operator (S’Z) and measurements of the x component of the
spin are found rotating the state vector to the corresponding new references basis
In this case then one prepares a state |1),) = u [¢), and then measures S, on the new
state, such that

<Sac> = <¢x‘32|7/}x>

2. There is only one state (J3)) and measurements of different observables, for example
of Sx, are found applymg distinct measurement operators on the reference state. Thus
we have S, = HTS.7, as it can be easily checked, and

(So) = (WISal¥).

INotice that rotating to the x basis, which by definition is a rotation in an abstract vector space, in
this special case corresponds to an actual physical rotation in real space of the SG device. This is a quite
special coincidence that happens almost exclusively for spin observables.
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Chapter 3

Time Evolution

In the previous Chapters we have introduced the general formalism of quantum mechanics,
and concentrated on the description of static quantum phenomena. Starting with this
Chapter, we will introduce time dependence to quantum states and one of the fundamental
tenets of non-relativistic quantum theory: SchrAqdinger’s equation.

3.1 Transforming Quantum States in Time

In the second Chapter we have introduced the first three Axioms of quantum mechanics,
essentially concerning how a quantum system is represented as a state vector, how it is
manipulated through operators, and how the measurement process takes place.

How do quantum states evolve in time though? We can formalize this question saying
that we want to determine an operator U (to,t1) that takes a given state at an initial time
to: |¥(tp)) and transforms it into

(W(t1)) = Ulto,t1)|¥(t0)). (3.1.1)

Notice that here the notation U (to, t1) means that, in general, we expect the operator form
to depend parametrically on both the initial (¢y) and the final time (¢1).

3.1.1 Conditions on U

We can already derive several interesting properties of the operator U , just requiring some
fundamental properties related to time evolution. The operator U transform physical states
into physical states, thus a first property we should expect is that it should preserve the
normalization of |¥), since Axiom 2 requires that we have a consistent probabilistic inter-
pretation of state vectors at each instant of time. This translates into the requirement:

(W(t1)[¥(t1))

(U (t0)|U (to, 1)U (to, t1)| ¥ (to)) (3.1.2)
(W(to) W (to))- (3.1.3)

The second property we expect from this operator, is that it can be arbitrarily composed,
in the sense that successive time evolutions of tg — t; — to — t3,... must be equivalent
to a single time evolution of the total time. For example we must have:

Ulta, t3)U(t1,t2)U (b t1) = Ulto, ts), (3.1.4)

where it is crucial to notice that early times appear in the right of the expression above,
since:

U(ts)) = Ulta,ts)|¥(ta)) (3.1.5)
= Ulta,ts) [U(t1,t2)|\1'(t1)>] (3.1.6)
= Ulta, t3)U(t1, t2) [U(to,tl)hlf(to)ﬂ. (3.1.7)
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3. TiME EvOLUTION

Furthermore, if we go back in time , this operation should be equivalent to applying the
inverse transformation:

Ulto,t1) = U™'(t1,to), (3.1.8)

where U~! denotes the inverse of the operator.
The last property that we can intuitively expect is that in the limit of small time
evolution the operator U should strictly reduce to the identity,

lim  Ulte,t1) =1, (3.1.9)

‘tllﬁto

since the state is unchanged when not time evolved.

3.1.2 Time-Invariant Case

In order to determine a concrete form for the time evolution operator, we start with a simpler
case, in which we imagine the system to be completely isolated from the environment, and
make the assumption that the time evolution depends only on time differences and not
on the absolute values of times. In other words, assuming for example that we consider
equispaced time intervals tqg — to + Ay — to + 24, ..., we have

[Wto+Ar)) = U(A)|¥(to)), (3.1.10)
U (to + 24,)) U(A)]®(to + Ar)), (3.1.11)

where it should be noticed that we are using the same operator to evolve the state of an
interval Ay, regardless of the initial time. This assumption is, in practice, very well verified
in the great majority of quantum systems. Later in this Chapter we will discuss how to go
beyond this.

For the moment, let us show that all the conditions previously described are satisfied if
we take the time evolution operator to be described by the following unitary operator

UA,) = e 98 (3.1.12)

where € is an Hermitian operator. The exponential of the operator indeed has essentially
the same meaning it would have for regular numbers, and it is understood in terms of its
Taylor expansion:

s - A 1.
e = 1-i0A, - 022 +0 (a0 (3.1.13)

thus we can also clearly see that € carries the units of a frequency. From the Taylor
expansion (3.1.13), we immediately see that (3.1.9) is verified. The unitarity assumption
is also quick to verify, since it is an elementary property of the exponential of an operator

that eX" = (eX)T, thus
A~ AT
Uta) = (@A (3.1.14)
QA (3.1.15)
where in the last line we have used the fact that  is Hermitian and
UNANT(A) = ePBeemiQA (3.1.16)
= 1. (3.1.17)
The composition property is also a natural consequence of the exponential structure

U(A; + Ay) U(A)U(A) (3.1.18)
e—iQ(Al-‘rAz) — e—iQAze—iQAl (3119)
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3.2. The SchrAﬁIdinger equation

as well as the time inversion property noticing that
U(=A,) = 98 (3.1.20)
thus we recover the time inversion property as a direct consequence of unitarity:

¢iMBeo—iQA ] (3.1.21)

U(=A) = UYAY. (3.1.22)

The exponential form therefore satisfies all the requirements, and it is actually part of a
broader mathematical result known as Stone’s theorem.

3.2 The Schr;&ﬂdinger equation

In the previous Section we have used very general arguments to determine that the time
evolution operator should take the form:

U(A,) = e 18 (3.2.1)

The operator Q, which is an Hermitian operator, is what we can immediately identify as the
generator of the time evolution. In classical mechanics, the generator of the time evolution
is the Hamiltonian of the system. By analogy, it is therefore natural to identify Q also as
the Hamiltonian operator of the quantum system. Q, as previously introduced, however
has the dimensions of a frequency, whereas in classical mechanics the Hamiltonian has the
units of an energy. We thus define the actual Hamiltonian operator of the system with the
correct units:

H = #Q, (3.2.2)

through Planck’s reduced constant, . This units rescaling, strictly speaking, is not of
fundamental importance for the development of the theory at this stage, however we will
show later on that this definition allows to consistently recover classical physics at the
macroscopic scale. We stress however that the Hamiltonian operator concept is a broader
concept than what found in classical mechanics, and that is is often the case that quantum
Hamiltonians do not have a direct classical counterpart. In this sense, the analogy should
always be taken with a grain of salt, and strictly speaking, only the definition through the
operator U is always correct. From the previous reasonings and definitions, we thus have
that a quantum state evolves according to:

W(t+Ay)) = e 72 u(L). (3.2.3)

This equation is, in essence, all we need to perform the time evolution of the system.
However, we can derive a more famous equation when considering an infinitesimal time
step d;. Using the Taylor series for the exponential, we get

L H
(U(E+0)) = |0(1) —id—[¥(t) + OF), (32.4)
and slightly rearranging the terms we get:
W(t+d;)) — |P(t -
e t? YO _ e, (3.2.5)
t

By taking the limit 8; — 0 in the previous equation, this leads to the famous SchrAqdinger
equation for quantum states:

) -
i [U(2) = HI¥ () (3.2.6)

This equation fully specifies how a quantum state evolves in time, once an initial condition
|} is given and the Hamiltonian operator is established.
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3. TiME EvOLUTION

3.3 Energy Eigenstates

So far, we have determined a very important differential equations governing the time
evolution of a quantum state, Eq. (3.2.6). We now analyze more in detail the connection
between the spectrum of H and the dynamics of the quantum system.

A first observation is that we are considering the case in which H is time independent,
as a direct consequence of the time-invariance assumption we have previously made (we will
see later that when this assumption is violated the Hamiltonian can be thought of changing
in time). For the moment, for time-independent H we can always define time-independent
eigen-kets

H|Ey) = EilEy), (3.3.1)

where for the sake of simplicity we are assuming there that they are labeled by an integer
index k. In this case, we can always expand the time-dependent state in terms of the energy
eigen-kets:

W) = Y |Ex)(Ex¥(t)) (3.3.2)
k

= > |Bu)e(t). (3.3.3)
k

The action of Schrodinger’s equation in this representation is then particularly easy to
visualize:

Zhgt;|Ek>ck(t) = ;ﬁ|Ek>0k(t), (3.3.4)

Y VB ety = 3 Byl Ei)en(r). (335)
k k

Further multiplying on the left by (Ej/| and using the orthonormality condition we get that
each coefficient ¢;, satisfies

ih@tck(t) = Ekck(t), (336)
which has the solution:
cr(t) = e P ER/Nte, (0). (3.3.7)

We therefore already see the importance of energy eigenstates: if we know the expansion
coefficients of the initial state in terms of the energy eigen-kets, then we can determine at all
times the behavior of the quantum state. Notice that in this basis, dynamics is just a simple
phase multiplication, thus it is also clear that by construction Y, |cx(t)[* = 3, ek (0)]?,
the norm conservation condition. It is also instructive to derive the same result just using
the form of the exponential operator U(t) = e~*/" and noticing that it acts trivially on
the eigenstates of the Hamiltonian

U)w) = e*“f“/ﬂxm (3.3.8)
e NN " e (0)| Ex) (3.3.9)
k
= ) e B, (0)| Ey) (3.3.10)
k
= D cl(t)|Er). (3.3.11)
k

34



3.4. Time-Dependence of observables

3.4 Time-Dependence of observables

Having established the fundamental equation governing the dynamics of a given quantum
state, Eq. (3.2.6), we can now also determine how observables behave. To this purpose, we
can compute the expectation value of some observable A at time t using the standard rules
for expectation values:

(A)1) = (U)A[E()), (3.4.1)
we thus have
(T)A[E(E) = (W(0)]e ™! Ae™ 71T (0)). (3.4.2)

In order to explicitly compute this expectation value, it is once more convenient to consider
the eigenstates of the Hamiltonian, and insert twice a completeness relation:

(@O T A w(0) = S ((0)|e H | Ey) (B Al By ) (By e 7 9(0))
.k’

S e T T e (0)* Ak, K )ew (0), (3.4.3)
Kk’

where we have introduced the matrix elements of the operator A in the energy basis:
Ak, k') = (Ey|A|Ey), as well as the expansion coefficients for the initial state at time
t =0, cx(0) = (Ex|P(0)). This expression basically tells us that the expectation value of
an arbitrary operator in general is found as the summation of characteristic oscillations in
time, with frequency depending solely on the energy differences

Ek — Ek’
3 .
We will see soon that these kind of oscillations, first predicted by Niels BOHR, can be exper-

imentally observed, and, among other things, they allow for the most precise measurements
of h available so far.

wk,k/ =

(3.4.4)

3.4.1 Special case: conserved quantities

While, in general, expectation values of observables will oscillate in time according to the
expression (3.4.3), there is however a very important case in which measuring the same
quantity at later times will yield the same average results. In other words, we can find

specific observables for which (A)(t) = (A)(0) at all times. These are called conserved
quantities, since their expectation value is conserved as a function time.

In general, a conserved quantity is associated to an operator A, that commutes with
the Hamiltonian, i.e.

[Ac,H] = 0, (3.4.5)

thus implying, as we have seen before, that the eigenstates of the Hamiltonian are also
eigenstates of A.. In turn, this means that the matrix elements of the operator in the
energy eigen-basis greatly simplify:

(Ex|Ac|Ew) = Okpear, (3.4.6)

and that all the Bohr frequencies are vanishing, resulting in
(TO)AJT(1) = > ler(0)] ax, (3.4.7)
k

which in turn is identical to the initial value

(T(0)| Ac|W(0)) > i (0) (Bl Ac| By Yepe (0)
k.k’

> ler(0)Pax
k

= (1) Ac¥(1)). (3.4.8)
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3.5 Heisenberg picture

We have seen before that the expectation value of a given operator reads

(W(0) T AT RIW(0)) = (W()A[w()), (3.5.1)

this way of looking at expectation values of static operators over time-dependent states is
principally due to Schrodinger. An alternative view, due to Dirac, but most well known as
Heisenberg picture, consists in considering time-evolved operators

Ap(t) = ei%tfle_i%t, (3.5.2)

and static states. In this section we will denote Heisenberg operators with the subscript
h. Thus, in this picture, all quantum states are static, and operators change in time.
This picture is completely equivalent to Schrodinger’s interpretation, however it can be
sometimes useful to reason in terms of operators rather than states. This is best understood
when obtaining the equations of motion for the Heisenberg operators Ay (t). Considering
once more the case of time-independent Hamiltonians, as well as of observable without an
intrinsic time dependence, we have

Ap(t+5) = G (t450) f =it (t+51) (3.5.3)
= An(t)+ 5t%ﬁfih - 5t%flhﬁ, (3.5.4)
thus
dAn(t) i
= —[H, A 5.

3.5.1 Conserved quantities

We have already seen when analyzing the time dependence of observables in Schroedinger’s
picture that if an observable commutes with the Hamiltonian then the Bohr frequencies are
strictly vanishing, and the observable expectation value is time independent, Eq. (3.4.8).
This notion of conservation law being associated with the commutator with the Hamiltonian
is particularly transparent from Heisenberg’s picture. We see from Eq. (3.5.5) that if H
commutes with our observable, then the time derivative of the operators in the Heisenberg
picture is vanishing, thus the observable is constant in time.
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3.6 Example: Spin Precession

After having developed a great deal of the machinery necessary to study quantum dynamics,
it is instructive to look at an example. Here we want to consider the case of a spin 1/2
particle (for example, an electron) inside a magnetic field. Classically, the potential energy
of a magnetic dipole is

U = —u-B, (3.6.1)

where B is the magnetic field and pu is the magnetic dipole moment. Inspired by this form,
and recalling that the Hamiltonian operator is related to measurements of the energy of
the system, we define the quantum Hamiltonian operator describing the interaction of the
spin with the magnetic field in this case to be

i = -£5.B, (3.6.2)
m
and considering the case in which the magnetic field is pointing in the z direction, we have

o = -%4.8.. (3.6.3)
m

We see that since the Hamiltonian is proportional to S, thus it is obvious that [ﬁ , S’Z] =0
and that the eigenstates of S, are also eigenstates of the Hamiltonian, such that

- h
H|S,;+) = (ﬂ;BZ) 1S.; £) (3.6.4)

h
= jzin |S2; 1), (3.6.5)

where we have introduced the frequency wg = ‘elfz .
The time evolution then reads

Uit) = e 'wt 3.6.6
= e BT (3.6.7)

Thus if at time ¢t = 0 the system is an arbitrary state:
(W(0)) = ci]Sa+) +c[Sa5—), (3.6.8)
at time ¢ we have
() = cre TS +) + et TS, —), (3.6.9)

following directly from Eq. (3.3.7), since the Hamiltonian is diagonal in the eigen-kets of
S..

3.6.1 Starting from an eigenstate of S,

Let us now analyze the specific case in which we start our time evolution from an eigenstate
of S,, say |S.;+), thus ¢, = 1 and c_ = 0. We see that at time ¢ the state remains always
in the same state, since

[B(t) = e TS+, (3.6.10)

differs from the initial state only for an (irrelevant) global phase. This is a stationary state
for the dynamics, as we have discussed before, and also since the operator S. commutes
with the Hamiltonian we clearly see that at all times the expectation value of the spin does
not change:

(5:(t)) = (5:(0)) (3.6.11)
- +g_ (3.6.12)
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Figure 3.6.1: Values of the expectation values of the three components of the spin. The
spin performs a precession in the xy plane, when the initial state is an eigenstate of S, and

the magnetic fields points in the z direction.

3.6.2 Starting from an eigenstate

of S,

The situation is more interesting if we start from an eigenstate of an operator that does
not commute with the Hamiltonian. For example, we take

W(0) =[S
1
V2

and we can for example compute the expectation value of S, at later times:

(Sa(t)) = (W(®)|S:|¥ (D)

Il
N | =
L

¢

.

4

+),
[|Sz§ +> + |Sz§ 7>] )

e*iw?BWSZ;—@ S, x

X [eiinBt‘S% +> =+ einBt|Sz§ 7>}

[eint + efiUJBt:I

coswpt,

DO S SN

and similarly one can find

(Sy(1)) =
(5:(t)) =

[9P(523 +15,1823 =) + €285~ 15,1525 +)]

3 sinwpgt,

0.

(3.6.13)
(3.6.14)

(3.6.15)
(3.6.16)

(3.6.17)
(3.6.18)
(3.6.19)

(3.6.20)

(3.6.21)
(3.6.22)

We therefore see that the expectation value of the spin precesses with a frequency wg. This
kind of phenomenon is very well established from the experimental point of view, and it is

the basis also for very precise measurements
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3.7 Time-Dependent Hamiltonians

We now generalize our discussion, and consider the case we have been so carefully avoiding
until now, namely the case in which the time evolution operator depends not only on the
time difference A; = t; — tp but also on both ¢; and tg. In this case, it is non longer true
that the exponential form we have derived before is valid:

U(to, t1) #+ eiiﬁ/h(tlito).

This situation typically arises when the system interacts with an external degree of freedom
that is explicitly time-dependent, and it is not isolated from the external environment'. To
see why this is the case, let us consider the case we have considered so far, where we have
identified the Hamiltonian operator H with the measurement of the energy of the system
in exam. We have seen in 3.5.1 that if an operator commutes with the Hamiltonian, then
its expectation value is a conserved quantity, i.e. it does not change with time. In the case
of the Hamiltonian, it is therefore clear that in all the previous discussions we had

(Energy)(t) = (0(t)|H]¥(1))
—  (Energy)(t = 0),

since obviously the Hamiltonian commutes with itself. The previous situation then trans-
parently corresponds to the case in which the system is isolated and energy is conserved.
To go beyond this assumption, it is customary to consider Hamiltonian operators that ex-
plicitly carry a time dependence (i.e., their matrix elements depend on time), for which, in
general, we have

(Energy)(t) = (U@
£ (Energy)(t = 0),

and physically corresponds to a quantum system that is no longer isolated from the external
environment and can freely exchange energy with it. In order to find an explicit expression
for the time-evolution operator in this more general case, we consider small time increments
&+, and look at the time evolution in this small interval:

t = t+4, (3.7.1)

Since we are considering a small §;, we can make the assumption that within this time
interval the Hamiltonian is constant and equal to the value it had on one of the two extremes,
for example H(t). In this case, the previously determined time evolution still holds, and
we have

Us(t) = e H®/A (3.7.2)

Following the same reasoning, we can also conclude that at each time the Schroedinger’s
equation still holds, provided that we take into account the explicit time dependence of the
Hamiltonian, i.e. formally we have to solve:

ih%hll(t)) = H(t)|¥(t)). (3.7.3)

3.7.1 Time evolution operator

In order to derive explicit expressions for the full time operator U(to, t1), it is very useful
to divide the time interval [tg, 1] into p smaller time slices of duration d;, such that t; =
to+pxd;. With the idea of splitting the time evolution into small chunks of times where the
Hamiltonian is almost constant, and using the composition property of the time evolution

n the previous discussion, the only allowed interaction with the environment was through the measure-
ment process, otherwise the system was supposed to be perfectly isolated when undergoing time evolution.
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3. TiME EvOLUTION

operator, we can then write the total time evolution operator as a product of the “standard”
time evolution operator for the small time steps:

Ulto,t1) = Us(to+ (p—1)8) ... Us(to + 6)Us(to), (3.7.4)
p times
~ 67i1{1(t0+(p71)5t)5t/h o efsz(to+5t)§t/hefiﬁ(to)6t/h (3'7'5)

where we have taken the number of time chunks to be p = (1 — to)/d:, and it is to be
understood that it is only in the limit d; — 0 that this expression becomes exact. These kind
of small-time expansions for the time evolution operators are of fundamental importance
in a variety of applications of quantum mechanics, ranging from path integrals to quantum
computing.

While the expression (3.7.5) is rather general, there are however some special cases in
which it simplifies. Let us consider now two important sub-cases.

3.7.1.1 Hamiltonians at different times commute

In this case, we assume that [H(t1),H(t2)] = 0 Vt1,t2. Recalling that for two generic
operators A and B we have

0
- , 3.7.6
. (37.6)

and using the fact that the Hamiltonian commutes at different times, we can then put all
the terms in Eq. (3.7.5) together in a single exponential and we have that

h

. p—1
Ulto,t1) ~ exp lz ﬁ(t0+k5t)6t]. (3.7.7)
k=0

In the limit of vanishing time step, the sum becomes and integral :

Ulto,t1) = exp {; /tldt’ﬁ(t’)} (3.7.8)

to

We will see when considering specific applications, that this expression is particularly useful.

3.7.1.2 Hamiltonians at different times do not commute

Eq. (3.7.5) is very general, therefore it is still a valid solution for the time evolution operator
even in this case. It is possible to show (but we will not show the demonstration) that the
total error of that approximation is of order d¢, thus negligible in the limit in which §; — 0.
The important difference however is that we cannot gather together all terms into a single
exponential, since in general

o~ #OLH(t468:) o~ 18 H (1) 4 e—%ét(l:[(t+6t)+lfl(t))7

given that we are considering the case [H(t), H(t')] # 0. The formal solution to the time
evolution operator is therefore given by

U(to,tl) —  lim e tH(to+(p=1)8)6c/h  —iH (to+61)8¢/h,—iH (t0)s¢/h
6¢t—0
= lim T gem Aok o) B (3.7.9)

Alternative (and more complex) expressions for the time evolution operator can be obtained
also using the Dyson series expansion or the Magnus expansion. During this course we
won’t consider these alternatives and, in general, we will not attempt to solve for the time
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3.7. Time-Dependent Hamiltonians

evolution operator directly when considering non-commuting time-dependent Hamiltonians.
Instead, we will typically resort to solving the Schroedinger’s equation (3.7.3) for the state
|W(t)), which can be recast as a system of linear ordinary differential equations for the
expansion coefficients of the state vector :

ihér(t) = Y (Ag|H(t)|Ap)ew (2). (3.7.10)
"

In this expression, it is very important to notice that we are representing our state using
the eigen-kets of a time-independent operator A:

AlAk> = ak\Ak> (3.7.11)
alt) = (Au(t), (3.7.12)

since the eigen-kets of the Hamiltonian are also time dependent, thus cannot be used as a
fixed reference set of “coordinates” for our state.

41






Chapter 4

Magnetic Resonance and Ammonia

In this Chapter we continue analyzing the dynamics of a spin in a magnetic field, extending
our analysis to the case of time-dependent field. We also show an example of a complex
physical system (the Ammonia molecule) that can be well approximated by two-dimensional
state vectors, also called two-level systems.

4.1 Magnetic Resonance

Let us consider the situation in which a particle with spin 1/2 (for example an electron) is
subjected to a time-dependent magnetic field.In the previous chapter, we have written the
Hamiltonian in the case of a static magnetic field, and the situation is analogous also when
B acquires a time dependence, with the notable exception that the Hamiltonian becomes
time dependent:

A e 5 o
H(t) = ——S-B(1). 4.1.1
() = —=5 B (4.1.1)
We imagine now that the magnetic field is such that
B(t) = By+Bi(t) (4.1.2)
= DByZ+ B coswt + §B sinwt, (4.1.3)

thus there is a static magnetic field in the z direction (as in the previous exercise) but
also a time-dependent magnetic field in the xy plane oscillating with a frequency w. The
Hamiltonian then reads

Hit) = —SByS -2+ —SBi(S-i+5-9) (4.1.4)
m m
= woS. + wicos(wt)S, + sin(wt)S,), (4.1.5)
where we have defined
B
w = 4B (4.1.6)
m
B
wy = ‘6|71. (4.1.7)
m

Using the expression for the Pauli operators, we can write the explicit matrix elements of
the Hamiltonian in the basis of the eigen-kets of S.:

i) = ZWO( - ) n gwl {Cos(wt) ( s ) + i sin(wt) ( v )](4.1.8)

h wo w1 (cos(wt) — isin(wt))

2 < wi (cos(wt) + isin(wt)) —wp > (4.1.9)
h wo wlefiwt

T2 < wiet  —wy > ' (4.1.10)
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4. MAGNETIC RESONANCE AND AMMONIA

We immediately notice that in order to solve for the dynamics of the system we cannot
use the solution of the time evolution operator we have found for the time-independent
Hamiltonians case. Moreover, it is easy to prove (left as an exercise) that

[H(t1), H(t2)] # 0, (4.1.11)

for ¢1 # 1. Since we cannot easily solve the time-dependence for quantum states using
the unitary evolution operator U, we resort to the last method outlined in the previous
Chapter, namely directly attacking the Schroedinger’s equation. We represent the state at
time ¢ as

W) = er(t)]Sa4) + e (D)5 -), (4.1.12)

and, following Eq. (3.7.10), we write the Schroedinger’s equation in matrix form as

(i) - H () e

thus the following system of coupled differential equations:

i0peq (t) = Loy (t)+ Ge e _(t)
{ iatC, (t) = %ei‘”tc+(t) _ %C, (t) . (4114)

4.1.1 Solving the Schroedinger Equation

Solving the differential equations (3.4.3) can be easily done numerically, however we focus
here on finding an explicit analytic solution. For this purpose, we consider a change of
variables:

arlt) = e, (1)
a_(t) = e “2c_(t), (4.1.15)
and substituting these into the original differential equations we obtain for the first equation:
ie” 2 19,0, (t) — i%aJr(t)} = %e_i‘“t/Z(M(t) + %e‘i‘“t/ga,(t) (4.1.16)
iy (t) = ?c@(t) + %a_(t), (4.1.17)

thus we see that the transformation we have done has removed the time dependence on the
coefficients. Similarly, the same things happen for the other equation, and we get:

{ i0ras(t) = “52ay(t) + Ga(t), (4.1.18)

i0ia_(t) = %ay(t) —252a_(t).

Another way of looking at the change of variables (4.1.15) is that it defines a new state:

W(t)) = ), (4.1.19)
which also leads to a transformed time-independent Hamiltonian
gz Pfwomw e (4.1.20)
2 w1 w—wqg }’ o

such that it satisfies the Schroedinger equation
ihO U (t)y = H'|U(t)). (4.1.21)

Because the transformed Hamiltonian is time independent, we can easily solve this problem
using the “standard” approach, namely diagonalizing H' and developing the time evolved
states in the eigen-ket basis. The general solution is left as an exercise, here we consider
a few special cases, similarly to what we did in the absence of the time-dependence in the
external field.
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4.1. Magnetic Resonance

4.1.2 At resonance

At the resonance condition (wg = w) we have that the effective Hamiltonian is simply

" = Z(o?l %1> (4.1.22)
= wS,, (4.1.23)

Let us analyze now the specific case in which we start our time evolution from an eigenstate
of S, say |S,;+), thus ¢y =1 and c_ = 0. This state corresponds, because of (4.1.15), to
ar =1and a_ =0, thus

[w(0)) = [S:+). (4.1.24)
and

(78180 4+) + 1818, ) (4.1.25)

Sl

(78 (18u+) +1825-) + €15 (IS25+) =[S -))) (4.1.26)
= cos(wit/2)|Sy;+) — isin(wit/2)]S,; —). (4.1.27)

DN | =

and inverting the transformation we get
W(t)) = e ™2cos(wit/2)]S.;+) — ie™ 2 sin(wit/2)|S.; —). (4.1.28)
We thus see that the probability of finding the state in the opposite state (|.S,;—)) is

P_(t) = [(S;—|w(t)[ (4.1.29)
sin (;uq) . (4.1.30)

Notice that these oscillations have a frequency wq/2 and can then be used as a tool to
_ le|B1 \Bl

accurately measure the transverse magnetic field B, since wy = . This is the principle
used in Magnetic Resonance Imaging (MRI) to measure very small magnetic field in the
body, useful to learn about the local chemical or physical composition of cells and tissues.

4.1.3 Off Resonance

To solve the more general case, we notice that

P(t) = [(S—[w(@) (4.1.31)
= (<Sz;—Ie‘“t%l\ll(zf)’>2 (4.1.32)
= e —jwy| (4.1.33)
= (S5 =T, (4.1.34)

where we have seen that the primed state is found by time evolution with a time-independent
Hamiltonian:

W) = e Fw0), (4.1.35)

where we also have used that |¥(0)) = |¥(0)’). In order to compute this state explicitly,
we use the general identity

o) = fcos<a|>+'(|a ot
[¢

B | )sm(|a|) (4.1.36)
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4. MAGNETIC RESONANCE AND AMMONIA
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Figure 4.1.1: Maximum probability of flipping a spin using a time-dependent transverse
field. At resonance, the maximum probability approaches unity.

for a vector @ = (ag,, ay,a.). Proving this identity is left as an exercise, and relies on the
Taylor series expansion of the exponential, in combination with the fact that the Pauli
matrices square to the identity (62 = i) We therefore see that the unitary operator
associated with the time evolution has exactly the same form:

TRt = exp {—;t [(wo —w)]6, + wl&z]} (4.1.37)
— Feos (L) = L (w6 + (wo —w) &) sin [ Q1 (4.1.38)
= lcos |3 q @10z + (wo —w)62)s 5 ) 1.

where Q2 = (wp — w)” +w?. Thus if the initial state is [¥(0) = |S.;4), we see that the only

term that matters for the transition probability is:
2

P(t) — “"lem(Q;) (So: 16| (0)) (4.1.39)
_ gi[sin(Q;ﬂZ (4.1.40)

w? t\1?
_ 1 : 2
= m {sm ( wi + (wo — w)22>} . (4.1.41)
This expression, first derived by Rabi, clearly shows that unless we are spot on the resonance
(i.e. w ~ wp) the maximum probability of flipping the spin is small and given by a Lorentzian
curve:
wi
P(t) = ——— 4.1.42
mpx (*) w? + (wp — w)?’ ( )
as also shown in Figure 4.1.1
_ Alternatively, it is possible to find the same result using the eigen-kets of the hamiltonian
H’. Calling A = % (wo—w) , and T = %wl, we can diagonalize the Hamiltonian matrix
explicitly, solving:
det( T AE) = (EB°=A*)-T (4.1.43)
=0 (4.1.44)

46



4.2. The Ammonia Molecule

which has the two solutions

h
Er = +5 w? + (wo — w)>. (4.1.45)

We see that this result is in agreement with what we previously found, in the sense that
the Bohr frequency is

E,—-FE_
Q _
h
The corresponding two eigen-kets can also be found, and read:
1
|+) = - < EiT— A > . (4.1.46)
T2+ (Ex — A)

We leave as an Exercise to derive Rabi’s formula using these eigen-kets, which is a more
laborious route.

4.2 The Ammonia Molecule

The Ammonia molecule (NHs3) is an interesting case of complex system that nonetheless
admits a relatively simple description in terms of a two level system. In the following we
will make the assumption that we have a single molecule at rest, that is spinning around
the axis formed by the triangular plane containing the Hydrogen atoms and the Nitrogen
atom (see Fig. 4.2.1 for a visualization of the pyramidal structure of this molecule). In
this situation, there are two equivalent positions for the Nitrogen atom: either in the upper
part of the Hydrogen plane or in the lower part. Restricting our attention to only these
two possible geometric configurations, we are going to associate two basis states |1) and
|2), respectively to the up and down Nitrogen configurations, thus

) = (é) (4.2.1)
2) = ((1)) (4.2.2)

Once determined the relevant basis states for our state vector, in general we will have that
the state of molecule is given, as usual, by:

W) = call)+caf2), (4.2.3)

and in general we expect the molecule to be in a linear superposition of the two geometric
configurations.

Next, we would like to make an educated guess for the Hamiltonian of the system. Since
we have claimed that the system is completely symmetric under exchanging the states |1)
and |2), we expect that the average energy of these two states must be the same, thus

(1|H1) = (2|H|2) (4.2.4)
Ey, (4.2.5)

where Ej is some experimentally measurable value. Moreover, in nature both configurations
are observed, thus there must be a process that allows the two states to transform into each
other, i.e. an up state to become a down state and vice-versa. Since the dynamics of the
system is induced by the Hamiltonian, as we have seen in the previous Chapter, it must be
that the matrix elements of the Hamiltonian connecting different states are non-vanishing
(otherwise, as we will see, these transitions wouldn’t be possible). We call the off-diagonal
elements of the Hamiltonian

(1|H[]2) = (2/H1)* (4.2.6)
= —A, (4.2.7)
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4. MAGNETIC RESONANCE AND AMMONIA

where A > 0 is a phenomenological, real-valued constant to be determined from the ex-
periments. Also notice that (1|H|2) = (2|H|1)* follows, in general, from the fact that the
Hamiltonian is an Hermitian operator. The Hamiltonian then has the following matrix

elements:
oo E, —-A
H= ( A E, > . (4.2.8)

The energy eigenvalues are found diagonalizing this matrix, solving

Ey—F —A
det( O_A B, E ) = (Ey—E) - 42 (4.2.9)

= 0 (4.2.10)
which has the two solutions

E: = Ey+A (4.2.11)

The corresponding two eigen-kets are also easily found (Exercise), and read:

I+ = \}5( _11 ) (4.2.12)
- = \}5( | ) (4.2.13)

The Hamiltonian we are considering is time-independent, thus the time evolution operator
is

Ut) = e #ft (4.2.14)

and we can also find its matrix elements in the [1),|2) basis. For example, we can use the
completeness of the energy eigen-kets:

4.2.15
4.2.16

(e FT01) = (1]e™ R 4) (+]1) + (1le™# =) (1)
= TRE D + e ()
%e—%Egt (e—%At+e+i%t>
= e*flEOtcos(At/h),

4.2.17

—~ o~ o~ o~
e D

4.2.18

N
o

Figure 4.2.1: The ammonia molecule has two equivalent geometrical arrangements, one
with the nitrogen up (left) and one with the nitrogen down (right). [Credits: Feynman’s
Lectures on Physics]
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4.3. Static Electric Field

(Al #2) = (1e FT 4 (+]2) + (1feH ) )(—|2) (12.19)
- i(e*ﬂmfe*ﬁﬂf) (4.2.20)
_ %e—%Eot (e—%At_e“%t) (4.2.21)
= e wPotsin(At/h), (4.2.22)

and similarly for the other two matrix elements. The full matrix representation is therefore:

- . _ipy ( cos(At/h) isin(At/h)
U = e r* <isin(At/h) cos(At/h) )’ (4.2.23)

which, as expected, can be checked to be a valid unitary matrix (Exercise).
Now, for a generic state as in Eq. (4.2.3), we can determine the time evolution of the
amplitudes, i.e. ¢1(t) and ca(t) simply applying the time-evolution matrix:

210 _ i [ cos(At/h) isin(At/h) c1(0)
( 1 ) = e *" ( isin(At/B)  cos(At/h) ) ( 5(0) ) (4.2.24)
_ eéEUt( cos(At/h)e1(0) + i sin(At/h)ea(0) )
isin(At/h)c1(0) + cos(At/h)c2(0) )7

which fully specify the time evolution of the state. For example, if we started from a state
pointing in the up direction (i.e. ¢1(0) =1 and ¢2(0) = 0), we would have

( 01(25; ) _ 6—2E0t< Z-C;i(ﬁt//i% ics;:(%t/g) ) ( (1) ) (42.26)

_—imet [ cos(At/h)
— HE (Z.Sin(At/h)>, (4.2.27)

(4.2.25)

thus the system acquires a finite probability of flipping into the down position, which can
be computed as

P(2)

(21 (1)) (4.2.28)
= lea(t))? (4.2.29)

S EE 120

whereas the probability of finding the Nitrogen down is

P) = [(1]e(1)? (4.2.31)
= e (t)]? (4.2.32)

- [Cos (‘:)} i . (4.2.33)

We therefore see that the time evolution of the molecule is analogous to what we found
previously for the spin precession in the presence of a time-dependent magnetic field.

4.3 Static Electric Field

The charge distribution in the ammonia molecule is not spatially symmetric, specifically
the electronic charge tends to be closer to the nitrogen atom. As a consequence, there is
en effective electric dipole moment pg pointing from the nitrogen atom to the hydrogens
plane (see Figure 4.3.1).

Because of this finite electric dipole, the molecule will interact with an external electric
field £. The interaction energy is

UE = —LLE-S7 (4.3.1)
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4. MAGNETIC RESONANCE AND AMMONIA

| 1) | 2)

Figure 4.3.1: The ammonia molecule in the presence of an electric field in the z direction.
The figure also shows that the dipole moment has two opposite directions in the states |1)
and |2). [Credits: Feynman’s Lectures on Physics]

thus for an electric field in the z direction we have that the two states |1) and |2) must
have different energies (in one case the electric dipole is aligned with the electric field, in
the other case it is anti-aligned). The Hamiltonian then becomes

. ( Botppt. A
A= ( T B e ) . (4.3.2)

The energy eigenvalues of this modified Hamiltonian can be found solving

Ey+ugé, — F —A 7
det ( -A Ey—upE, - F > = (Eo— E+prt.) (Ey— E — pp€.)(438)

= 0, (4.3.4)

which has solutions
Er = Ey+\/(up€.)* + A2 (4.3.5)

In the interesting case in which the electric field is small (i.e. up€, < Ep) we can approxi-
mate the eigenvalues to be

Er ~ FEg+ A+M (4.3.6)
24 )

where we have used the expansion v1+e~1+ 3.

An interesting consequence of the presence of the electric field, is that we can use it to
separate the two states |1) and |2) with a device similar to the Stern and Gerlach device
(with the important difference that here we are using the electric field rather than the
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4.4. Quantum Zeno Effect

magnetic field to perform the separation). This can be understood thinking of a spatially
inhomogeneous electric field, such that the force acting on the two states is

0
_ L) o
= ¥ azé’z, (4.3.8)

thus at the output of the analyzer we measure the states |+) and |—) going, respectively,
in the upper and lower sides of the detector.

This selection mechanism is used, for example, in the Ammonia MASER, where the
molecule with the higher energy are filtered out thanks to an external electric field, as
outlined above.

4.4 Quantum Zeno Effect

We conclude our discussion on the dynamics of two-level systems showcasing one peculiarity
of the interplay between quantum time evolution and the measurement process. For this
case, we consider an idealized situation in which we have a single electron source, immersed
in a magnetic field in the x direction, of strength B,. We have already seen that in this
case the Hamiltonian is

H = w;S;, (4.4.1)

with w, = lelB: This situation is analogous to the resonant case studied for the time-

dependent field, and the time evolved state is:
[T(t)) = cos(wyt/2)]S,;+) —isin(wy,t/2)|S.;—). (4.4.2)

This implies that if we start from a state |¥(0)) = |S,;+), we can find a total time T such
that the probability of flipping the spin is equal to one, since:

P(T) = |(Ss—|¥(T)? (4.4.3)
= |sin(w,T/2)|? (4.4.4)
= 1, (4.4.5)

implies (for example) T = 7/w,. An experimental setup with Stern-Gerlach devices realiz-
ing this scenario is shown in Fig. 4.4.1.

Figure 4.4.1: Polarized up spins (in the state |S,;+)) entering a magnetic field for a time
T = 7/w, exit with probability one in the down state, |S.; —).

We then imagine to place a sequence of M Stern-Gerlach devices, all measuring the
z component of the spin, as shown in Figure 4.4.2. We also make the assumption that
the spin measurement is faster than any other time scale. What happens now is that we
have M measurements, at a set of discrete times ¢, = kT/M and after each measurement
the spin is “reset” to either |S,;+) or |S,; —), depending on the value of the amplitudes
(S; £V (tg))-

Now, if we take a large number of measurements, we have that the system evolves N
times under the action of the magnetic-field Hamiltonian for a small time 6, = T'/M. For
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4. MAGNETIC RESONANCE AND AMMONIA

example, if the previously measured state was |S,;+) at step ¢x_1, then the probability of
getting the same state after the measurement at step ¢y is

Py = |cos(w,8,/2)* (4.4.6)
2,,2
- 1- % + 0@, (4.4.7)

The probability of getting a sequence of M states of type |S.; +) following the measurements
is then the product of these individual probabilities:

P(T) =~ (1 - 53;5)”[ (4.4.8)
_ <1 _ gj\;’f)M (4.4.9)
_ (1 _ ;A;)M (4.4.10)

thus we see that in the limit of a very large number of measurements,

lim Py (T) =1 (4.4.11)
M —o0
This results therefore is the exact contrary of what we would have obtained in the absence
of intermediate measurements, where had found P, (7) =0 !

This phenomenon, also observed experimentally, is known as Quantum Zeno Effect,
because it’s the quantum analog of the many paradoxes that the greek philosopher Zeno of
Elea had invented (for example, “Achilles and the tortoise”, is a similar classical paradox
involving infinitesimal changes in time).

By B )= B,y )= - [ B,
N mmmo - 4

- Cm ==

Figure 4.4.2: Experimental Setup for the Quantum Zeno Effect: a very long sequence of
M measurements followed by the application of magnetic fields for shorter times §; = T'/M
leads to an output state that is unchanged with respect to the input.

4.5 References and Further Reading

A complete treatment of magnetic resonance can be found in full detail in Cohen-Tannoudji
(complement F-IV of Tome 1). The Ammonia example has been first presented by Feynman
in his lectures on Physics, Vol. III, Chapter 8 and Chapter 9.
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Chapter 5

Continuous Degrees of Freedom

In the previous Chapters we have focused on the theoretical description of discrete degrees
of freedom. These typically arise in the case of spin wave functions, when measurements
only result in a discrete and finite set of possibilities. There are however very important
cases in which observables are intrinsically continuous, even in the quantum case. This
is the case for example of quantities such as position and momenta of particles. While it
is always possible to think about these cases as specific limit of finite-dimensional vector
spaces (see also Exercise 7), it is more natural to extend the previous formalism to account
for intrinsically continuous degrees of freedom.

5.1 Bra-Ket formalism for continuous degrees of freedom

The formalism in this case is very close to what already discussed about finite vector spaces.
We consider for example some continuous degree of freedom described by the operator &,
so that it possesses a set of eigenvalues £ and eigenvectors |£) satisfying:

gey = €|, (5.1.1)

notice that in this case there will be infinitely many kets |¢’) satisfying this relationship,
each of those with some associated eigenvalue.

Other than this important distinction, we also need to generalize our formalism to
accommodate for orthonormality relationships and closure relationships that are well suited
for continuous variables. Table 5.1 summarizes the main correspondences, that should be
fairly intuitive to understand.

Property Discrete case Continuous case
Operator A é
Eigenvalues A|A1> = a;|4;) £|f/> = ¢£'¢")
Completeness ZZ |Ai)(A;] = 1 fd§,|f/><f/| =1
State Expansion W) =3, [Ai) (A W) |O) = [dE'|E)(E|D)
State Normalization > A )2 =1 [ o) =1
Orthonormality (AilAj) = 6,5 (€' =o(8" = ¢")

Operators Matrix Elements  (A;|A|A;) = §;;a; (€€ = 6(¢" — )¢’

Table 5.1: Correspondence between discrete and continuous kets formalism.
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5. CONTINUOUS DEGREES OF FREEDOM

5.1.1 Dirac’s Delta

The only more subtle point in this correspondence concerns the introduction of Dirac’s
delta §(z), a generalized function that plays a very important role in the study of Hilbert
spaces. Here we just recall that Dirac delta can be seen as the limit of an infinitely tight
Gaussian:
1
6(z) = lim ———e 27, (5.1.2)

o—0 27‘(‘0‘

as also shown in Fig. 5.1.1.

Figure 5.1.1: Dirac’s delta as the limit of an infinitely narrow Gaussian, d,(z) =

From this limiting expression, it follows directly that the delta is an even function of its
argument:

ixz) = i(-x), (5.1.3)

and that it integrates to one

/OO dzé(z) = 1. (5.1.4)

— 00

Another distinctive feature of the delta is that

/OO deF()5(x) = F(0), (5.1.5)

—00

which is quite natural when thinking of the delta as a very sharp gaussian, that is zero
almost everywhere but close to the origin. This property of course generalizes to arbitrary
arguments of the delta, that correspond to shifting the mean value of the corresponding
limiting gaussian:

/_OO deF(z)0(x —xg) = F(x0). (5.1.6)

Other important properties of Dirac’s delta can be found in math textbooks.

5.1.2 The state function

Since, in general, the variable £’ associated to the eigen-kets is continuous, we can identify
the expansion coefficients of an arbitrary quantum state in this basis as a complex-valued
function (also known as “wave function” or “state function”):

vE) = (), (5.1.7)

with the property of being L?, integrable, i.e. it can be correctly normalized in a way that

/ dEVEP = 1. (5.1.8)

Notice that this property is a fundamental property of wave functions, and it is a direct
consequence of the Born interpretation for P(£) = |¥(€)|?, that is the probability density
of measuring a given value of £. For example, armed with Born’s probability density, if we
had to compute the probability Ps of measuring a value &y < £ < &y + 6, we would use the
standard rules of probability theory:

Eo+6
Rlg) = [ deluor (5.1.9)
o
~ §|W(&))? (5.1.10)
= (&P, (5.1.11)

o4



5.2. Position operator

Notice that this also marks a slight but important difference with respect to the case
of discrete variables, since the amplitude [(£|W¥)|? is not the probability of obtaining the
measurement value &y, as it would be in the discrete case, but rather the probability density
of obtaining &;. Strictly speaking, for a continuous variable the probability of obtaining
exactly &y is infinitesimally small in the window ¢ around it, thus it is zero in the limit
6 — 0. In most of the applications we will never compute point-wise probability densities
to evaluate physical quantities, but rather integrals over finite windows of values.

5.2 Position operator

Let us now focus on the common case in which we are interested in measuring or just
characterizing theoretically the position of a given particle (say, an electron). For simplicity,
we first focus on the case in which the particle is constrained to be in one dimension. In
this case, the eigen-kets are just one-dimensional coordinates:

zlz'y = a'|2"). (5.2.1)

As much as done when considering the measurement postulates for spin systems, a very
similar situation is found when considering continuous variables. Specifically, we can imag-
ine that we can measure the position of our particle taking a snapshot of it. Every time we
take a picture of this particle, we will see a spot in our picture at a given position z’, and
the wave-function collapses into the corresponding eigenstate

W) |2 (). (5.2.2)

We can easily extend this description also to higher dimensions, i.e. we lift the constraint
of having purely one-dimensional particles. In this case the wave-function is therefore a
complex-valued function of the vector r = (z,vy, 2) :

(x,y,2|¥) = V(z,y,2), (5.2.3)

where we have postulated that W is an eigenstate of all coordinates. This hypothesis is
verified experimentally. As a result of the discussion in the previous Chapter, this implies
that position operators commute

&, 9] 0 (5.2.4)
[2,2] = 0 (5.2.5)
0,2 = 0 (5.2.6)

5.3 Translation operator

In addition to the concept of position for a quantum particle, the other major observable
concerning particles in continuous space is the momentum. In order to derive a consistent
form for the momentum operator, we first need to introduce the concept of translation
operator, since this will be instrumental in defining the form that the momentum operator
takes in quantum mechanics.

We start by considering an infinitesimal translation operator, T(ér) parameterized by a
certain 3-dimensional infinitesimal translation ér = (dz, dy, dz), whose job is to translate a
certain eigen-ket of the position operator:

T(or)|r) = |r+or). (5.3.1)

The action of this operator is quite simple, since it takes a certain eigen-ket of the position
operator, |r), and returns another eigen-ket of the position operator, |r’ + dr’). From this
expression we also see that |r’) is not an eigen-ket of the translation operator, since it is
transformed into another eigen-ket and not into itself.

%)



5. CONTINUOUS DEGREES OF FREEDOM

Applied on an arbitrary state, |¥), the action of the infinitesimal translation operator
is

T(6r)|¥) = T(5r) / dr|r)¥(r) (5.3.2)
_ / T (61)|r) W (x) (5.3.3)
_ / dr|r + 6t) U (x) (5.3.4)
_ /dr\rw(r—ar), (5.3.5)

where in the last line we have considered the change of variable r — r — dr, that does
not affect the value of the integral, since we are already integrating over the full space.
This expression also shows that, in position space, the effect of the translation operator is
effectively ¥(r) — ¥(r — Jr).

We can already derive several interesting properties of the operator T, just looking at
how the state transforms under its action. Specifically, we should have that the translated
state |U') = T'(6r)| W), is still correctly normalized, i.e.

W0y = (U|Tt(0r)T(6r)| D) (5.3.6)
= (¢|U). (5.3.7)

This condition is satisfied if the translation operator is unitary:
TH(or)T(or) = 1. (5.3.8)

The second property we expect from this operator, is that it can be arbitrarily composed,
in the sense that subsequent translations of dry, dry, drs, ... must be equivalent to a single
translation of the sum vector:

T(6r1)T(0r5)T(0ry) ... = T(6ry 4 0ry +ors+...). (5.3.9)

Furthermore, if the translate a certain system back to its original position, this operation
should be equivalent to applying the inverse transformation:

T(=6r) = T (or), (5.3.10)

where T~ denotes the inverse of the operator.
The last property that we can intuitively expect is that in the limit of vanishing trans-
lations the operator T should strictly reduce to the identity

lim  7T(ér) =1i. (5.3.11)
|[6r|—0

As we have already seen for the case of the time evolution operator, and as a consequence
of Stone’s theorem, all these conditions are satisfied if we take the infinitesimal translation
operator to be described by the following unitary operator

T(r) = e iKor (5.3.12)

where K is a vector operator K= (K = Ky, KZ) where each of the individual components are
Hermitian operators. Here, the exponential of the operator has exactly the same meaning
it would have for finite vector spaces, and it is again understood in terms of its Taylor
expansion:

2 1

e iKor ] K. Sr— 5([3 . §r)(f( -or) + O [(51-)3] . (5.3.13)
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5.3. Translation operator

From this expansion, we immediately see that (5.3.11) is verified. The unitarity assumption
is also quick to verify, since it is an elementary property of the exponential of an operator

that X = (eX)T , thus
Pier) = i) o (5.3.14)
_ ik (5.3.15)

where in the last line we have used the fact that K is Hermitian. The composition property
is also a consequence of the exponential structure

e—if(ﬁrle—ikﬁm.“ _ e—if(~(6r1+6r2+...)7 (5.3.16)

as well as the inversion property

T(—6r) = Ko (5.3.17)
il org—ikor 1, (5.3.18)
T(=6r)T(0r) = 1, (5.3.19)

T(=6r) = T7'(or). (5.3.20)

5.3.1 Commutation relations of K

The operator K we have introduced before is Hermitian thus, by the fundamental axioms of
the quantum theory, it is also a physical observable. A natural question we can ask already
at this stage is whether this observable is compatible or not with measurements of the
position operator. For this purpose, we know that it is enough to compute the commutator
[K ,7] and verify if it is vanishing or not.

When we first apply an infinitesimal translation and then the position operator, we
have:

T (0r)r'y = #r’ +or) (5.3.21)
= (¢’ +r)|r’ + or), (5.3.22)

on the other hand when we first apply the position operator and then translate, we have
T(or)elr'y = v'T(6r)|r)) (5.3.23)
r'|v' + or), (5.3.24)

subtracting these two equations we therefore get

[, T(0r)][r') = or'|r’ + ér) (5.3.25)
= or'lt) + O[(6r)?]. (5.3.26)

Now, since this equation must be verified for all kets |r'), we conclude that this commutator
identity between operators must hold

[, T(6r)] = orl. (5.3.27)

Remark. In the following, we will often avoid explicitly writing the r.h.s. of this equation
as drl and omit the identity operator. It should be however always clear that the result of
a commutator of two operators is always an operator, and never a scalar.

Given the definition of the translation operator in terms of K, we also have

[£,1—iK-or] = —i[t,K -or] (5.3.28)
= or. (5.3.29)
Component-wise, we have (say for the x component):
& K] = 4,
and more generally
[fa, Kp] = idas
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5. CONTINUOUS DEGREES OF FREEDOM

5.4 The Momentum operator

Similarly to what we have done for the case of the time evolution, where we had identified
the operator Q) with the Hamiltonian of the system, through the units rescaling H= hQ,
also in the case of the K operator we can perform a similar analysis. Specifically, and
also in analogy with classical mechanics, we want to identify the generator of the spatial
translations with the momentum operator p. From a dimensional point of view, we see
then this is achieved posing

p = K, (5.4.1)
thus the commutation relations read
[favf)ﬁ] = ihdap. (5.4.2)

We will show a bit later on that the factor & is not only necessary for dimensional reasons,
but also necessary to both recover classical mechanics, in an appropriately chosen limit,
and to explain experimental evidence from atomic physics.

5.4.1 Correspondence Principle

It was remarked by Dirac, that the commutation relations:

[Fo, B3] = O (5.4.3)
[Pa:Ps] = 0 (5.4.4)
[Fo,Pp] = ihdas. (5.4.5)

are formally similar to the classical Poisson bracket relations between positions and mo-
menta, that naturally emerge in the Hamiltonian formalism of classical mechanics. The
analogy, also known as “correspondence principle”, is found through the replacement

[7 ]Classical — e (546)

where the classical Poisson bracket of functions of the canonical coordinates r and p is

0A 0B  0A 0B
[A(r, p), B(r,p)]classical = Z <87”ap - (9;037‘) . (5.4.7)

Most notably, in classical mechanics we have that

[rou p,B]classical = 6&57 (548)

which through the formal replacement, Eq. (5.4.6), reduces to the canonical quantum
commutation relations. This analogy is valid essentially because classical Poisson brackets
have algebraic rules that are analogous to operator commutators (for example, you can
check that [A, Blelassical = —[B, Aclassical €tc. This analogy also carries along to the case
of dynamics, where a classical observable of the canonical coordinates, A(r,q) satisfies the
equation of motion:

d
%A(TJJ) = [AyH]classicah (549)

where H is the classical Hamiltonian function, satisfying Hamilton’s equations of motion:

{ 7= 9 [7’, H]classical

. ) 5.4.10
P=—5 = [ 7H]classical ( )

we thus immediately see that Eq. (5.4.9) is formally equivalent to Heisenberg’s equations
of motion, provided that the replacement, Eq. (5.4.6), is performed. Incidentally, this also
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5.5. Position representation

provides a further justification of why we have previously called the operator H , generating
the time evolution, the Hamiltonian of the system. Nonetheless, it should be remarked
that these analogies are somewhat only formal (essentially due to the algebraic properties
of the Poisson brackets), and that is often the case that quantum mechanical quantities do
not have a classical analogous through the correspondence (5.4.6). For example, the spin
observable is not in formal correspondence to some function of the classical variables, and
an approach based on the time or space translation operators are more general to derive
equations of motion and commutation relations for the quantum observables, rather than
relying on the classical correspondence.

5.5 Position representation

We are now ready to discuss some important properties of the position representation,
namely of how quantum states expanded in the basis of the position operator look like. We
start the discussion first with the one-dimensional case, to avoid proliferation of unnecessary
bold faces and indices. We have already seen at the beginning of this Chapter how an
arbitrary state can be expended in a continuous basis written as

|U) = /d:c\x)(xm/) (5.5.1)
/dx\:cﬁ/)(x) (5.5.2)

Overlaps between states expressed in the position representation are also obtained integrat-
ing over space:

(@w) = /dx<¢|m><m|\lf> (5.5.3)
_ / e (2)* (), (5.5.4)
and matrix elements of some some operator A are just
@AY = [ do@la)(aldv)
= /dxdx'<c1>|x><xm|x'><x'|\p>
_ / deda'®(2)* Az, ') U (). (5.5.5)

All of these are really just immediate consequences of the definition of completeness for
kets defined on continuous variables. As it can be seen from Eq. (5.5.5), in general for
an arbitrary operator we need to evaluate its matrix elements (z|Alz’) = A(x, ') in the
position representation basis.

A simplification occurs when the operator Ais diagonal in this basis. This happens for
any function of the coordinates only, say for operators A ¢ = f(&), where f is some arbitrary
analytical function of the coordinates (for example f(%) = ai? —bZ etc). By taking a Taylor
series expansion of the function, in this case it is easy to see (exercise) that

[Af,i] = 0, (5.5.6)
thus the operator is diagonal in the position basis, implying that
dgla) = f(@)la), (5.5.7)
and for the matrix elements of the operators in the position basis we have

(z|Afla’y = 6z —a')f(x). (5.5.8)
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5. CONTINUOUS DEGREES OF FREEDOM

In this special case then the matrix elements of the operator among two general states
simplify to

(D|As|T) = /da:@(z)*f(x)\ll(x). (5.5.9)

5.5.1 Momentum operator in the position basis

We now want to compute matrix elements of the momentum operator in the position basis.
For simplicity, we work again in one spatial dimension and consider only the component
z of the momentum, p,. Knowing the action of the momentum operator in this basis is
fundamental, for example, to compute expectation values of momenta, kinetic energy etc,
as we will see.

To start off, we consider the action of the translation operator on an arbitrary ket, Eq.
(5.3.5), in the case of a small displacement 0 :

e—ikmém |\If>

/da:/\xw(x/ —5) (5.5.10)

/dz’\z’> (¢(x’) - 5zgz’l> + 0(62), (5.5.11)

and multiplying on the left by a basis ket we deduce that the wave-function amplitudes
after applying the translation operator read

()

(z]e” K0 |B) = (x) — 6, o T O2). (5.5.12)
On the other hand,
e b |0y = ([ —iK,6,)|0) + O(62), (5.5.13)
from which we also deduce that
(z]e” K2 @) = () — %5m<x|ﬁz|\ll> +0O(82). (5.5.14)

Equating equations (5.5.12) and (5.5.14) at the given order in §, we then get

o)

(wlpal¥) =~

(5.5.15)

This expression basically tells us that the effect of the momentum operator (apart from
factors) is to take the derivative of the wave function. If now consider the special case in
which |¥) = |2’) , and ¥(x) = (z|P) = (x|z') = 6(z — a’), we get the sought-after matrix
elements:

(z]pela’) = fiﬁ%&xfx’). (5.5.16)

Also, matrix elements of the momentum operator between states known in the position
basis are then just

(O[5 ¥) = —ih / dxdx’@(m)*%é(m—m’)\ll(m') (5.5.17)
= —ih/dm@(x)*%\ll(x). (5.5.18)

Arbitrary analytic functions of the momentum can also be obtained, using the corresponding
Taylor series, and knowing that each power of the momentum performs a derivative with
respect to the coordinates. An important higher order function is just the square of the
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5.6. Momentum representation

momentum, giving rise to the kinetic energy Er = p?/2m, for a massive particle. In this
case,

(xlpz]w) = /d$/<$\l5x|$/><$'|ﬁz|‘1’> (5.5.19)
= (—ih)z/daz' <§x(5(x—x’)> <£w(x’)> (5.5.20)
- _7128%22 (@). (5.5.21)

Exercise 7. Instead of using the operatorial representation of the momentum operator
as a derivative operator acting on a Hilbert space, consider instead an approximation of
the momentum operator in a finite-dimensional vector space. To this end, consider a finite
one-dimensional system living in a box of width L, and discretize the space into small
“bins” of width A. What is the dimensionality of the state vector in this discretized
position representation? Using then the definition of the translation operator, show that the
momentum operator in this finite-dimensional vector space is approximated by a tridiagonal
matrix.

5.6 Momentum representation

Until now we have worked solely with eigenstates of the position operator, however it is
interesting to look at the eigenstates of the momentum operator as well. These are defined
by the usual eigenvalue relation:

plp) = plp), (5.6.1)

and can be useful, for example, if we wanted to represent a certain wave function in this
basis. In order to avoid cluttering the notation, in this section we will omit the lower index
x to characterize the x component of the momentum, thus it is assumed, starting from the
equation above, that p = p, Since in the previous discussion we have already derived the
action of the momentum operator on an arbitrary ket (Eq. (5.5.15)), we can rewrite the
eigenvalue equation as

(zlplp) = plzlp) (5.6.2)
= —ih(,%(ﬂp). (5.6.3)

We therefore see that the eigenfunctions of the momentum satisfy this simple differential
equation

plalp) = —ih (e, (5.6.4)

It is easy to see that we are after an exponential form:
(zlp) = Ne'v, (5.6.5)
where N is a normalization that should be fixed imposing the usual constraint:
lp") = dp-»p), (5.6.6)
[astialals) = 36— (5.6

We can explicitly write the 1.h.s. of this equation and notice that is is just a representation
of the delta function:

|N|2/dxe“" = |NPP2rhd(p — ), (5.6.8)
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5. CONTINUOUS DEGREES OF FREEDOM

we therefore conclude that N = 1/v/27h is a good normalization (there is an arbitrary
phase to be picked in choosing N and the convention is just to take N to be real and
positive). We thus have that the eigenstates of the momentum operators are plane waves:

(xlp) = WorTs (5.6.9)

This also allows us to find the relationship between wave functions in different bases. For
example, a wave-function in real space, 1)(x), has a representation ¢(p) in momentum space:

W) = [ delple)ale) (5.6.10)
i = [ =) (5.6.11)

and vice-versa:

(@) = / dp(z|p) (pl) (5.6.12)
via) = [dp ) (5.6.13)

The correspondence between real-space and momentum-space wave-function is now evident
in its beauty: transforming a given quantum state between these two bases requires per-
forming (inverse and direct) Fourier transforms of the corresponding wave functions. It
should be stressed that all of these results have been obtained using the few postulates of
completeness for quantum states, and the connection between translation operator and the
momentum operator.

5.7 Quantum and classical particles

We are now already in position to make an intermediate summary of the results we have
obtained so far, and clarify the fundamentally different description of particles arising from
quantum mechanics. The summary is presented in Table 5.2.

Classical Quantum
Two vector quantities : A ray in Hilbert space :
State
r=(z,y,2) and p = (pg, Py, P2) the state vector | )
The values of r and p |¥(r)|? and |¥(p)|? are the
Quantities can be measured probability densities of
directly observing a certain r or p
Uncertainty No constraint Heisenberg principle
. . = [r, H]classic: P = Llp H
Time Evolution r £, Hetassical f‘ ih [I:’ A]
p= [pa H]classical pP= %[p, H]

Table 5.2: Comparing the classical and quantum description of a particle.

5.8 Gaussian wave packet

In the following Chapter we will see how the wave functions can be obtained from first
principles, solving the Schroedinger equation. For the moment however, it is already inter-
esting to look at specific cases of wave functions that can help us familiarize with the basic
concepts of the theory.
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5.8. Gaussian wave packet

An important example is called the gaussian wave packet and allows us, in a certain
limit, also to connect to the classical behavior we would expect from a point-like particle.
The wave function in position space takes the form:

1 ) 22
\Ij(x,k,d) = melkzim, (581)

thus this state is parameterized by two constants k and d we can vary at will. We will
drop the explicit parametric dependence on these two parameters in the following. First
important observation is that the Born probability density in real space is:

1 m2
TE@P = =73, (5.8.2)

thus it is a gaussian centered at the origin and variance d2. This is the reason why we
referred to this before as a gaussian wave packet. The first consequence of this observation
is that the parameter d controls how localized the particle is around the origin. The smaller
d, the more localized the particle position will be, and a measurement of the position
operator will result in small variations across different measurements. On the other hand,
the larger d the more delocalized it is, and an observation of the position operator will
result in wildly different values for x at each measurement outcome.

The expectation values of the position operator is 0 for symmetry reasons (it is also just
the mean of the Gaussian):

(#) = (V[z]v) (5.8.3)
/dm (z|¥(2)[?) (5.8.4)
= 0. (5.8.5)

The spread of the measurement of  can be quantified by the expectation value of 2, which
in turn coincides with the variance of the gaussian:

(&%) = /d:c(x2|\p(x)\2) (5.8.6)
= d% (5.8.7)

Thus the intrinsic uncertainty related to the probabilistic nature of the measurement pro-
cess (quantum noise, if you wish) is given by

(622) = (2% — (&)? (5.8.8)
= d2 (5.8.9)

Again this expression should be interpreted in terms of many repeated measurements on
identical systems, imagining that each outcome for the measurement of z is recorded, and
that in the limit of a large number of measurements the variance of the observed z ap-
proaches d?.

The expectation value of the momentum operator is conveniently computed recalling
that (z[p|¥) = —ih, 2 U(z) thus

) = (vpv) (5.8.10)
- —zﬁ/dmllf(a:)*(,%\ll(x) (5.8.11)
= hk, (5.8.12)

the detailed derivation of the last line is left as an exercise. From this expression we see
then that the parameter k also has a transparent physical meaning: it is the “average” wave

63
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vector of the quantum particle described by this wave packet. One can also show that

R 2
(p*) = il h2k? (5.8.13)

2 2
(09%) = 15 (5.8.14)

From these two expressions we therefore see that the Gaussian wave packet saturates the
Heisenberg indetermination principle:

2
(62%)(6p%) = T (5.8.15)
That is why the gaussian wave packet is often called the minimum uncertainty wave func-
tion, in the sense that it is not possible to find other states with less uncertainty, as quan-
tified by the Heisenberg bound. This also tells us that if we are in a limit in which d — 0
there will be huge indeterminacy in the value of the momentum, and vice versa. To form
some intuition of this behavior, we can think that the more we try to spatially squeeze the
particle, the “hotter” it gets, with its kinetic energy increasing. While useful, as all analo-
gies with the classical world (in this case with thermodynamics) this analogy too should
be taken with a grain of salt. In the quantum case there is absolutely no dynamics (yet)
involved, and these rapid oscillations are just a result of the intrinsic probabilistic nature
of quantum mechanics.

Exercise 8. Find the momentum-space representation of the gaussian wave-packet state.

5.8.1 Classical observer and precision

This result also also tells us that, as long as our classical observer has an experimental reso-
lution (intrinsic precision of the instrument) on the momentum significantly worse than %
(i.e. they are not able to resolve features below that scale), and as long as the experimen-
tal resolution on the position is significantly worse than d?, both position and momentum
will appear to take constant values , every time their measurement is performed. This
tells us that in order to see quantum mechanical effects, it is often the case that we need
to go at scales (both in space and momentum) that have for long been not accessible to
experimentalists before the beginning of the 20th century.

5.9 References and Further Reading

The discussion done in this Chapter is adapted from Sakurai’s “Modern Quantum Mechan-
ics” (Chapter 1, sections 1.6 and 1.7). A detailed treatment of the position and momentum
representations can be found also in Cohen-Tannoudji’s book (Chapter 2 in general, and
also complement DII).
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Chapter 6

The Quantum Harmonic Oscillator

In this Chapter we start our analysis of a number of simple Hamiltonians that are both
practically and conceptually relevant to understand some of the emergent phenomena in
quantum mechanics. The main task will be to solve the Schrodinger equation for these
Hamiltonians, both in the static and in the time-dependent case.

6.1 Stationary States

We start our analysis with the simple harmonic oscillator in one dimension. The Hamilto-
nian in this case is given by
g oo P, i ,
2m 2

(6.1.1)

where the first term is the usual kinetic energy and the second one represents the energy of
a “spring” connected to the mass m. While this is a highly idealized model, it is often very
useful to understand molecular vibrations in solids or even the behavior of diluted atoms
confined with light. It is therefore essential, for any physicist, to know how to solve this
quantum Hamiltonian and understand its qualitative and quantitative features.

We start determining the eigenstates of the Hamiltonian. There are several techniques
to derive them, in this Chapter we will follow the so-called “ladder method”. We define
for this purpose a pair of so-called annihilation and creation operators (for reason to be
clarified later) with the following form :

N mw ([ ip
= /= — 1.2
“ 2h <x mw> (6.12)
st o M (L D 1
a 5% <JC mw>' (6.1.3)

These are non-Hermitian operators (thus, they cannot be directly measured) however they
are conceptually very useful to determine the eigenstates of our Hamiltonian. We first
notice that

a,at] = ”;—;_: {z+7;ixnzf;] (6.1.4)
= T (] + 15, 4) (6.15)
_ %% _ (6.1.6)
We further define the so-called “number operator”
N = afa, (6.1.7)
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6. THE QUANTUM HARMONIC OSCILLATOR

this is manifestly Hermitian, and it is directly connected to the Hamiltonian. We can see
that

N = % <5:2 miwﬁj: + miwszm m’;;) (6.1.8)
e (mﬁ; L4 WZJ) (6.1.9)
_ % (21’2 n m;‘%?) _ % (6.1.10)
_ Z} - % (6.1.11)

Thus the Hamiltonian is (essentially, apart from scaling factors and a constant shift) iden-
tical to the number operator:

H =

= Jhw <N+ ;) : (6.1.12)

therefore it is also true that [ﬁ , ]Sf ] = 0 and that the eigenvalues and eigenvectors of N are
essentially the same as those of H. We denote these eigenvalues and eigenvectors with

Nin) = nln), (6.1.13)

and it will be shown in a moment that the eigenvalues n are positive integers. We start
showing that n > 0, indeed we use the fact that

laln)]* > o0, (6.1.14)

and the eigenvalue equation for the number operator

lajn)]? = (nlataln) (6.1.15)
= n (6.1.16)
> 0. (6.1.17)

It is also useful to derive the commutation relations satisfied between the number operator
and the creation/annihilation operators:

[N,a'] = [a'a,a'] (6.1.18)
= af, (6.1.19)
and
[N,a] = lafa,a) (6.1.20)
= —a (6.1.21)

With these in hand, we are now ready to show that the states a'|n) and a|n) are eigenstates
of N with eigenvalues n + 1 and n — 1 respectively. We see this directly:

N(atn)) = [N,af]|n) + af N|n) (6.1.22)
= a'|n) +nafln) (6.1.23)
(n+ 1)a'|n), (6.1.24)
and
N(aln)) = [N,a]ln) +aN|n) (6.1.25)
= —a|n) + naln) (6.1.26)
= (n—1)aln). (6.1.27)
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We thus see that

afln) = anln+1) (6.1.28)

where the constants « and 8 can be determined imposing the normalization conditions

aat
n+1n+1) = W (6.1.30)
n|N + [a,af]|n
n+1

thus |a,|? = n + 1. With a similar reasoning we can determine the other normalization
constant

o1y - ()
(n—1n-1) = T (6.1.33)
_ (nN[n)
= P (6.1.34)
= G (6.1.35)

For simplicity, we thus take a,, = v/n+1 and 8, = y/n, and we have the fundamental
equations characterizing our creation and annihilation operators:

afln) = Vn+1in+1) (6.1.36)
aln)y = /nln—1). (6.1.37)

These two equations also imply that n must a positive integer. If this was not the case, by
repeated applications of the destruction operator we could find a negative eigenvalue, which
is not possible, as we have already demonstrated. If instead n > 0, then the destruction
operator terminates with the null state |0), corresponding to n = 0. The sequence of
eigenstates is then simply given as

10) (6.1.38)
1) = af|0) (6.1.39)

B at B (ah)?
[2) = ﬁ|1> =7 |0) (6.1.40)
P G 1.41
3) = ﬁ|2> G |0) (6.1.41)

al (ah)
|n) = %\n -1)= — |0}, (6.1.42)
the eigenvalues of the Hamiltonian are instead simply

E(n) = hw (n + ;) , (6.1.43)

thus since n is an integer, we see once more a quantization of the energy levels, whereas
in the classical case we would expect the internal energy of the harmonic oscillator to be
continuous.
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6. THE QUANTUM HARMONIC OSCILLATOR

6.1.1 Eigenstates in real space

We have now determined the full spectrum of eigenvalues and eigenvectors of the harmonic
oscillator hamiltonian, however we haven’t really explicitly found the functional form for
the eigenstates. To this end, we need to specify a convenient basis. We will now consider
the position basis, since it is quite natural to reason in terms of position amplitudes, at
least to start developing some intuition about quantum behavior. Consider for example the
ground state amplitude

(x]0) = o(x), (6.1.44)
we can solve for the function g (z) using the fact that
alo) = 0, (6.1.45)

and recalling the definition of the destruction operator in terms of position and momentum
operators: a = /"5 (56 + %), thus

(zalo) = \/ZT: <x + nzuai) Po(z) = 0. (6.1.46)

We can also define a convenient length scale zo = y/h/mw, and explicitly solve this differ-
ential equation. It is easily verified that the normalized ground state wave function that
solves the differential equation reads

2
bo(z) = Wl/j\/ﬁexp [—; (;) ] (6.1.47)

which is a special case of the Gaussian wave packed we have previously analyzed, Eq.
(5.8.1).
6.1.1.1 TUncertainty product

In that context, we have already evaluated expectation values of physical quantities over
this type of wave function, however it is also interesting to see how one can compute
expectation values of functions of Z and p using the creation and annihilation operators a
and a'. Considering again the definition of these operators,

T (i
a = \/gl‘o (m—i—mw) (6.1.48)
at = o ia <;%—Zp>. (6.1.49)

We have that

i o= 7g:o(awa*) (6.1.50)
p = \2/?;)(&&*). (6.1.51)

From these expressions it immediately follows that

(0zjo) = 0 (6.1.52)
(0[pl0) = o, (6.1.53)

since, in general, only expectations of operators containing products of an equal number
of @ and a will be different from zero. The situation is different for higher orders of the
particle coordinates and momenta, since

1
i = Jaf(aa+ala’ +aal +ala), (6.1.54)
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yielding

(0122|0)

on

20 (0jaa + atat + aa + atalo)

(0]aa'|0)

(0[1 4+ N10)

8 8 8
N"omwowwomw

(6.1.55)
(6.1.56)
(6.1.57)

(6.1.58)

as expected then z( plays the role of the variance of the density distribution. Similarly,

p\?
thus

(0[5%|0)

It then follows that

= (aa+a'a’ —aa' —a'a),

1 h?
2 x3

h2
(01A2?[0)(01Ap%(0) = -,

(6.1.59)

(6.1.60)
(6.1.61)
(6.1.62)

(6.1.63)

(6.1.64)

(6.1.65)

thus the ground state of the harmonic oscillator is also the state with minimum uncertainty.

6.1.2 Excited States

With the explicit form of the ground-state wave function given by Eq. (6.1.47), we can use
the creation operators to generate also explicit expressions for the excited (higher-energy)

states. For example,

Pi(r) =

walloy

\/%xo (x| (x - n’f;) 0)
[t -3 2]
\/%IO o) {m - x%% log 1/10(@}
Z52 (o)

(6.1.66)

(6.1.67)
(6.1.68)

(6.1.69)

(6.1.70)

(6.1.71)
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6. THE QUANTUM HARMONIC OSCILLATOR

Higher excited states can be found similarly, by repeated application of the af operator.
We report here the result for completeness

@) 10) (6.1.72)

nl
—% <;})21 . (6.1.73)

o (x 2 5>n ox
/4, /an!xg”r% 9 P

Other equivalent expressions for the excited states, in terms of Hermite polynomials, can
be found in textbooks.

6.2 Time evolution of the Harmonic Oscillator

In order to evaluate the time evolution induced by the harmonic oscillator hamiltonian, it
is convenient to work in the Heisenberg picture. We have:

d i
Zdnt) = —[H, int
San) = a0
d . i
%ph(t) = ﬁ[H,Ph(t)],
and evaluating the commutators:
[H,@n(t)] = [H,ertHgentH (6.2.1)
= HewtHge wtH _ eitH o= wtH [y (6.2.2)
= ertTHae w0 _ eitHpfewtH (6.2.3)
= et gl #tH (6.2.4)
e p‘? i 17y
= eTtH[%,if?]ef’th (6.2.5)
h iy
= —entHj_—pemwtH (6.2.6)
h
= —i—pu(t 6.2.7
Zmph( )7 ( )
and similarly
[H.pr(8)] = e T[H, ple 7 (6.2.8)
. ~2 N
= e%tH[mwQ%,ﬁ]e_%tH (6.2.9)
= mw’ihd,(t). (6.2.10)
Thus
d 1
—(x(t = —(p(t 6.2.11
Sty = o) (6:2.11)
d
S P®) = —mw (), (6.2.12)

These equations for the expectation values are completely equivalent to the classical ex-
pressions, since in the classical case:

%m(t) _ %)7 (6.2.13)
%p(t) _ _a%v(x) (6.2.14)
= —mwix(t). (6.2.15)
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We therefore see that the dynamics of the quantum expectation values is given by expres-
sions that are the same as for the classical values, with oscillations of frequency w:

(z(t)) = (x(0))coswt + % sin wt (6.2.16)

(p)) = (p(0))coswt — mw{x(0))sinwt. (6.2.17)
While these expressions are the same as their classical counterparts, it is important to
realize that the expectation values of the position and momentum will not always oscillate

with frequency w. For example, analogously to what what we have seen for the ground
state wave function, for all the eigen-states of the harmonic oscillator we have:

(n|&[n) 0 (6.2.18)
(nlpln) = 0, (6.2.19)

thus if, for example, at time ¢ = 0 our system is in one of the eigenstates |n), then the
expectation values just stay equal to zero at all times (x)(t) = (p)(¢) = 0. In order to see
oscillations, one needs to prepare the initial state in, at least, a superposition of two distinct
eigenstates. For example:
1
() = —=0)+11),

is such that & = gxo (a+ah)p= gi (a

@ORPO) = (01 + (1) Lan (a+a7) (0) + 1)

4
V2
= 7%0,
and
wOlpeO) = Lo an L e go )
= 22 ojapy - o)
= 0,
thus

(x(t)y = \/2£wcoswt (6.2.20)
(p(t)) = —\/m;wsinwt. (6.2.21)

6.3 Ehrenfest’s Theorem

In the previous section we have explicitly solved the Heisenberg’s equations of motion, and
found out that the dynamics of the expectation values of positions and momenta for the
harmonic oscillator follow the classical equations of motion. This result is not a coincidence,
and it is actually a consequence of a deeper and more general result. Through Heisenberg’s
equations of motion we can demonstrate the connection between quantum expectation
values and classical equations of motion, for a larger class of Hamiltonians. This connection,
knows as Ehrenfest’s Theorem concerns the time dependence of expectation values of general
continous-space Hamiltonians that depend on momentum and position:

A A P .

H(z,p) = o + V(2). (6.3.1)
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6. THE QUANTUM HARMONIC OSCILLATOR

The time-dependent expectation value of the position can be found using Heisenberg’s
equations of motion we have previously derived:

d . A
Sy = {[H) (632)
7 1 R
= o (%)) (6.3.3)
= o (65,3 + (5, 319) (63.4)
11
= 15— {-2h()} (6.3.5)
= <m> (6.3.6)

We therefore see that, for what averages are concerned, this is exactly the result we would
expect for a classical system. Similarly, we can compute the time-dependence of the mo-
mentum operator

S = () (637)

= 3 {V(@)8) (6.3.8)

- <8‘1v(a¢)> (6.3.9)

And see that it also coincides, in expectation, with what you would expect from Newton’s
equation. In order to obtain this commutator explicitly, we have used these very general
commutator results:

Theorem 9. The following commutator relations holds: [£™, p| = i hng™ !

Proof. The proof is obtained by recursive application of the elementary commutation rela-
tion. Since

C(n) = [&",p] = 2" [z, p] + [2" 1, P2, (6.3.10)
we see then that
Cn) = iha" ' +Cn-1)i (6.3.11)
= ihi" "t ikt 4 C(n — 2)i? (6.3.12)
= (n—1)iha" "t +C(1)z" 1, (6.3.13)
but since C(1) = [, p| = ih, it follows that C(n) = ihni" 1. O

Corollary 10. For regular functions of the coordinates, we have [V (&), p| = ihV'(&)

Proof. The proof is obtained considering the Taylor series of the function V(&) = >~ 7, " gn,
and its derivative V'(2) =Y 02 nz"'g,. Thus

[Zf”%vﬁ] = Zgn , D] (6.3.14)
n=0

= ih Zgnmznfl (6.3.15)
= hV'(2). (6.3.16)
O
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Chapter 7

Wave Mechanics

In the previous Chapter, we have seen how to solve a paradigmatic model (the harmonic
oscillator) using an algebraic technique based (essentially) only on commutators, both for
the stationary states and for the dynamics of the system. In the Chapter we explore instead
more directly Schroedinger’s equation in real space.

7.1 Schroedinger’s wave equation

We have seen that the Hamiltonian of a particle subjected to an external potential reads

. ﬁQ —

H = —+V(). (7.1.1)

2m

In the following we look into solutions of Schroedinger’s equation in position representation,
thus time-dependent amplitudes:

(z|U(t)) = Y(x,t). (7.1.2)
The amplitudes satisfy the usual equation:

D .
ih @ () = (2l H[U(), (7.1.3)

and recalling that

s (—z’%i)z (7.1.4)

82
= - 1.
g (7.15)

we have the famous Schroedinger’s wave equation:

2 52
ih%\ll(x,t) = 9

5 —5 5 V) + V(@)U (.. (7.1.6)

As we have discussed in the Chapter on time evolution, the solution to this equation takes
the formal solution:

(W) = (wle Fw(0)) (7.1.7)

where we have used the fact that the Hamiltonian is time independent. Since the exponential
of the Hamiltonian acts trivially on the eigenstates of the Hamiltonian |¢g):

e Mt gg) = eRPgR), (7.1.8)
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7. WAVE MECHANICS

it is very useful to solve for the them explicitly, giving rise to the so-called time-independent
Schroedinger’s equation:

(@|H|pp) = E{zl¢r), (7.1.9)
which in functional form is equivalently written as the following differential equation:

h? 92
© 2m 92

¢p(r) +V(2)gp(r) = E¢p(x). (7.1.10)

The generalization of these equations to 3 dimensions is straightforward, as it is sufficient to
recall that the kinetic energy in 3 dimensions is the sum of the three cartesian components,
thus

R K2 [ 02 0? 0?
R _,
- _ 1.1
Vit Vi), (7.1.12)

and a 3-dimensional wave function ¥(r,t) satisfies the corresponding Schroedinger’s equa-
tion with this Hamiltonian.

7.1.1 Probability flux

We have seen that a fundamental postulate of quantum mechanics is that physical wave
functions are always normalized, thus:

(w)le@e) = 1 (7.1.13)

Similarly to the dynamics of fluids, this conservation law implies the existence of a continuity
equation associated to the conservation of the integral of the probability density, p(x,t) =
|¥(x,t)]%. In order to find out explicitly the form of the continuity equation, we work out
the time derivative of the probability density:

%|\I!(x,t)|2 - (;W(x,t)*>W(x,t)+W(x,t)* (iwu,o), (7.1.14)

and substituting the time derivative of the wave function with Schroedinger’s equation we
have

%pp(m)ﬁ = % K;i;;\lf*) U+ o* (—Z;;wﬂ (7.1.15)
CR[(E)ev(B] o
_ _%% Ka‘iqf*)qf—qf* (;’mxpﬂ (7.1.17)

We then have the following continuity equation
%p(w,t) + %J(m,t) = 0, (7.1.18)

where have defined the probability current

J(z,t) = ;Z[(;C\Il*(x,t)) Uz, t) — U(z,t)* <86x\11(x,t))]. (7.1.19)

Equation (7.1.18) is a continuity equation in the sense that it is similar to what is used in
hydrodynamics to express the conservation of mass, whereas in this context it is derived
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assuming conservation of probability. The continuity equation also expresses a local con-
servation law for the probability. If we integrate the square modulus of the wave function
in a finite interval [a.b], we have

b
Q/ de|¥(x,t))> = J(a,t) — J(b,1), (7.1.20)
ot J,

thus the probability in the region delimited by a and b increases or decreases as a result of
the flux differences at the two extremes.

Since the probability current expresses the flow of probability density in time, we might
intuitively expect that it is also related to the momentum of the particle, as much the mass
current in a fluid is related to the velocity of the fluid. In his first works, Schroedinger was
actually led to conjecture that at each point in space one could identify this current with
the actual velocity field of the particles, however this leads to complications in the theory
and contradictions with the experiments. The connection between the probability flux and
the momentum is only valid on average, i.e. when considering expectation values of the
momentum operator. To show this, we recall that the average momentum is given by:

(p(t) = —ih/dz@*(z,t)% (7.1.21)
= ih/dwﬂ/(x,t)w, (7.1.22)

where in the last line we have used the fact that the expectation value of the operator is
always real, thus (p)(t) = (p)*(t). We can then conclude that

/de(m,t) = M, (7.1.23)

m

thus showing that only on average the current is equal to the particle’s velocity.

7.2 General Properties of Wave Functions

We now want to establish a few general properties of the solutions of Schroedinger’s wave
equation. We concentrate, for simplicity, on the one-dimensional case, but all the results
presented here are easily generalized to three dimensions.

7.2.1 Normalization

The first condition we have already seen, is that physically valid wave functions must be
normalizable, thus

+o0
/ Q@) = 1, (7.2.1)
— 00

which is a strict requirement due to the probabilistic interpretation of the wave-function
squared. It should be remarked, however, that Schroedinger’s equation generally admits
both normalizable solutions and un-normalizable solutions. In fact, the only requirement
we asked for eigen-kets of continuous variables is

@€lg) = a¢-¢) (7.2.2)

which is the completeness requirement of the basis but does not imply the normalization
condition of the eigen-kets (for discrete variables, instead, the two conditions are the same).
An important consequence is that, for example, the eigen-kets of the momentum are not
physically valid quantum states, since they are not normalizable! This is because they
correspond to the eigen-kets of the Hamiltonian of a free particle

H = p*/2m, (7.2.3)
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7. WAVE MECHANICS

whose probability density of being in a certain position of space is expected to be indepen-
dent on the specific position. In turn, this implies that the particle, in principle, could be
anywhere in the universe with uniform probability. This is clearly an absurd requirement,
and it is also the reason why the wave function is not normalizable. In general, however, free
particles do not exist in Nature, since they are always confined by some external potential
or by the interactions with other particles. In this sense, we can always think that there is
an intrinsic scale L beyond which (Jz| > L) it is essentially impossible to find the particle.
This finite length scale makes the wave function normalizable, as we will also show in the
following examples.

While some solutions of the Schroedinger equation are not normalizable, thus unphysical,
they are still very much useful to analyze the dynamics of physical wave functions.

7.2.2 Continuity

On physical grounds, it is reasonable to expect that the probability density is a continuous
function of x, thus ¥(z) is also expected to be continuous. From a mathematical point
of view, if the potential V(x) is bound and analytic, the solutions of the Schroedinger’s
equation must also be continuous and analytical. The situation is a bit different if the
potential is singular. Roughly speaking, however, a discontinuity in the wave function can
lead to a finite energy F only if it is compensated by a potential V (z) ~ ¢’(z) that cancels
out the singularity due to the kinetic energy at the discontinuity. For example, imagine
that around x ~ 0 the wave function has a sign-like discontinuity ¥(z) = sign(z), then
around the origin:

h? 9? h?
———U = ——4 2.4
) = ), (724)
thus only if the potential is V(z) = %5’ () can cancel out this singularity and lead to a

finite energy E.

7.2.3 Continuity conditions of the Derivative

In order to establish wether the first derivative ¥'(z) of the wave function is continuous or
not at some point = = a, we integrate the Schroedinger’s equation around that region with

a small e
a+te 2 2 a-+te
/_ dx [—;naaﬂ‘l/(x) + V(x)\ll(x)} = E/_ dx¥(z) (7.2.5)
h2 a-+te
o W0+ ) W0 )] + /_ Vi) U(z)de = O). (7.2.6)

From this equation we see that there are, essentially, two important sub-cases.

1. V(a) is finite, thus f(fj: V(z)¥(x)dz = O(e) and we can conclude that ¥U'(a + €) =
U'(a — €) + O(e), thus the first derivative is continuous in = = a.

2. V(a) is infinite, singular, etc (for example, V(z) = §(z —a)), then the first derivatives

is not continuous, and the discontinuity in the derivative is fixed by the equation
above, thus

m a-+te
Viate)—V(a—e) = %/_ V(2)0(z)da. (7.2.7)

We have therefore seen that a discontinuity in the wave function appears if the po-
tential, for example, V(x) ~ 0(x). Later on we will see an example application with
this idealized, yet reasonable potential.
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7.2.4 Minimum Allowed Energy

The energy eigenvalue E can, in general, be an arbitrary number. However, for a given
potential V' (z) there is a minimum energy value that can be taken. Specifically, we must
have

E > minV(z) (7.2.8)

x

= Vi (7.2.9)

This condition follows from the fact that the Hamiltonian contains two terms, and the first
one (the kinetic energy) is positive definite. In order to see this, consider

) = PO, (7.2.10)
then

@|®) > 0 (7.2.11)

(W|p?|) > (7.2.12)

Thus for an eigen-ket of energy E we have

A2

E = <E\§—m+V(:ﬂ)\E> (7.2.13)
> (U|V(2)|P) (7.2.14)
2 Vin- (7.2.15)

Another very important bound, known as variational bound, is found when considering the
expectation value of the Hamiltonian over a generic state. In this case, and assuming that
the Hamiltonian has a discrete spectrum (Eg < E; < F5...) for simplicity, we have:

(HY = (U|H|D) (7.2.16)
Eo[{(Eo|U)|> + E1|(EL W) ]2 + ... (7.2.17)

> Eol(Eo|¥)” (7.2.18)

> K. (7.2.19)

Therefore the expectation value of the energy on an arbitrary state cannot be lower than
the ground-state energy, Fy, and it is exactly equal to Ey only if |¥) = |Ep).

7.2.5 Bound states and scattering eigenstates

The solutions of the time-independent Schroedinger equation, |E), can be generally clas-
sified into two kind of states, depending on the value of the energy. The main criterion
is

(7.2.20)

E < V(£o0) ,bound state
E > V(£o0) ,scattering state

thus the type of possible eigenstates depends on the type of potential considered. Physically
speaking, bound states correspond to cases when the wave-function goes to zero in the limit
x — Fo0, thus we say that the particle is bound inside a certain finite region of space. The
harmonic oscillator is a clear case where this happens, since there V(£o0) = +o0o, and we
have seen that the wave-function vanishes exponentially when approaching x — %o0.

Scattering states are a very different beast, since in general they do not correspond
to physical states. The reason is that, since they are not required to vanish at z —
400, they are not normalizable. Nonetheless, albeit not being physical states, their are
still valid solutions of the time-independent Schroedinger equation and, as we will see in
the following, they play an important mathematical role in solving the time-dependent
Schroedinger equation.
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7.2.6 Parity operator

We define the parity operator
Mz) = |-z, (7.2.21)
which transforms coordinates into their negative values, thus acting on wave-functions as:
(z|I|¥) = U(-=z). (7.2.22)

The eigenvalues A of the parity operator and the corresponding eigen-kets |uy) are found
easily, since:

(wliljuy) = Aafux) (7.2.23)
(x|OMjuy) = Mz||uy) (7.2.24)
(xluy) = Nzluy), (7.2.25)

thus A = £1, and the eigenfunctions with positive/negative eigenvalue are all the even/odd
functions:

up(—z) = ug(x), (7.2.26)
u_(—z) = —u_(x). (7.2.27)

For potential energies that are spatially symmetric, (V(x) = V(—x)) we can see that the
Hamiltonian commutes with the parity operator. This is easily seen considering the matrix
elements of the commutator in coordinate representation:

A A H2 ~ ~ ~ H? ~
@A) = (2| <2pmn + V(x)H) - (H;n + HV(:c)) |2/ (7.2.28)
A9 A2
= (x| <2pm + V(a:)) | — ') — (—x (;;n + V(»T)> ') (7.2.29)
= —%;—;(S(x +a2 )+ V(2)6(x +2') + (7.2.30)
L b —a!) V()i + o) (72.31)
= (V(z) = V(-2))é(z+2) (7.2.32)
0. (7.2.33)

Thus when V(z) = V(—z), we can diagonalize the Hamiltonian and the parity operator
simultaneously, and the solutions of the Schroedinger’s equation at some energy F must be
also eigenvectors of the parity, thus they either satisfy

vE(z) = Ui(-a), (7.2.34)
E(z) = —0F(-2). (7.2.35)

The harmonic oscillator is one example of potential that is symmetric, and indeed we have
seen that in that case the even eigenvalues n = 0, 2,4, ... correspond to spatially even func-
tions, whereas the odd ones n =1, 3,5, ... correspond to spatially odd functions. While we
haven’t used this symmetry explicitly to solve the harmonic oscillator, reflection symmetry
(V(z) = V(—=x)) is in general a very useful tool, since it allows us to solve Schroedinger’s
equation more easily, since we can treat even and odd functions independently, as we will
see in the examples below.
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7.3 Bound States

We now analyze of a series of Hamiltonians that illustrate some of the general properties
of wave functions we have derived above, as well as show some remarkable properties of
the quantum world. We first consider a few examples of systems with bound states, thus
studying eigenstates of the Hamiltonian with energies E < V(4+00). As we have discussed
previously, these are also physical states, since they can be normalized. We will consider
scattering states in a separate section.

7.3.1 Particle in a box

The first system we study here consists of a particle inside a one-dimensional box with
hard walls, that prevent the particle from escaping. We can model this situation with a
symmetric potential:

0. —L<g<i
V(z)= { IR (7.3.1)
oo otherwise,

where we have called L the linear size of the box, as also shown in Fig. 7.3.1. Since the
potential is infinite at * — +o00, we expect to find only physically valid, bound states, as
also found for the harmonic oscillator case.

T L)2

Figure 7.3.1: Potential of a particle in a box with hard walls. The potential energy is here
taken to be infinite beyond the limits 0 < z < L.

Outside the box, we must have that |¥(z)|? = 0, since we have assumed that the
potential is infinite, and the particle is not found outside. Inside the box, the potential
energy is 0, thus the time-independent Schroedinger’s equation reads

K2 0%V
which can also be written
R

where we have introduced k = v2mFE /h. From the general bound we have derived in the
previous section, we know that the energy must be E > 0, since in this case Vi, = 0. It
also follows that the quantity k is real and that k£ > 0, thus the solution to the differential
equation (7.3.3) is

U(z) = Asinkz+ Bcoskz, (7.3.4)

where A and B are two constants to be determined. From the discussion on the parity
operator, we know that the eigenfunctions are of two types in this case, since the potential
is symmetric. We thus have:

U, (z) = Becosksz, (7.3.5)
U_(z) = Asink_z, (7.3.6)
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where E* = h%k. /2m are the energies of, respectively, even and odd states. We now need
to fix the free constants imposing appropriate boundary conditions and the normalization
for the wave function. Specifically, continuity of the wave function implies

Uy (-L/2) = 0 (7.3.7)
v, (L/2) = O. (7.3.8)
These condition yield
BcoskiL/2 = 0 (7.3.9)
Asink_L/2 = 0, (7.3.10)
which are satisfied if
L 1
L
]Li = n_m, (7.3.12)
thus
T
ko = 2n_— 3.1
n-g (7.3.13)
ke = (20, + 1)% (7.3.15)
T
= (=,3=,...). 3.1
(X3, (73.16)
The solution with n_ = 0 can be discarded, since it corresponds to a null wave function.

Overall the energies of the system are then given by

™
ko = ng, (7.3.17)
n o= (1,2,...), (7.3.18)

thus yielding a set of discrete values of k, and with states of even/odd n corresponding to
spatially odd/even wave functions. This quantization of k directly implies also quantization
of the energies, that can now be labelled with the integer index n:

h2k2

E, = -~ (7.3.19)
h2 2
- 2m7TL2 n?, (7.3.20)

thus the quantum particle can take only discrete values of the energy, in radical contrast
with the classical case. In order to determine the normalization constants, we need to
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impose the normalization condition. For example, for odd states:

(wrem)

| dsfusp
) L/2
2 [ dalusop
0
L2

2A2/ dx sin® (kx)

0

L/2
A2/ dz (1 — cos(2kx))

0

kL
A /0 da’ (1 — cos(z')) /2k

2
‘2% (2’ — sin()) 5"

A2
2k
A2
1.

—~

kL)

2o |

In summary, the eigenstates of the Hamiltonian are

(7.3.21)
(7.3.22)
(7.3.23)
(7.3.24)
(7.3.25)

(7.3.26)
(7.3.27)

(7.3.28)
(7.3.29)

(7.3.30)

These states vanish at the edges of the box, and have a number of nodes (values where the
wave-function vanishes inside the box) equal to n — 1, as also shown in Fig. 7.3.2.

Wn(x)

-2

L2
X

Figure 7.3.2: Energy eigenstates of a particle in a box with hard walls. The wave function
is shown in the region 0 < x < L, and it is vanishing elsewhere.

From the general theory we also know that a solution of the time-dependent Schroedinger
equation can be written as linear superposition of these basis states (since the Hamiltonian

is time independent), thus

U(x,

) = ) enlt)¥n(x),

n=1

(7.3.31)
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where

Ey

cn(t) = (U, |U(t=0))e """, (7.3.32)

and the initial amplitude (¥,,|¥ (¢ = 0)) is found using the standard tools we have introduced
in the previous Chapter. For example, if the initial state is known to be an even state in
position representation: ¥(x,0) = ¥(—z,0), then only the coefficients with n even are
non-zero and given by

(0, [T (t = 0)) [ " dww, ()0 (2, 0) (7.3.33)

9 [L/2 T
\/ T / s dx cos (nzw) U(z,0). (7.3.34)

7.3.2 Finite potential well

We now generalize the previous case and consider a finite potential well, described by the
potential:

Vo, ©<3%
Viz)=<0 -L<a<i (7.3.35)
Vo x>%

There are thus three distinct regions in space denoted I, II and III in Fig. 7.3.3. We con-

v

—L/2 0 L/2 x

Figure 7.3.3: Potential of a particle in a finite well. The potential energy is vanishing inside
the box (region II), and equal to V beyond the box limits —% <z< %, regions I and III.

centrate here on the bound states solutions, thus for solutions of the Schroedinger equation
with ' < V. The Schroedinger’s equation in the 3 regions reads

" 2 _ L
R S
where we have defined
k = vV2mE/h (7.3.37)
po= vamVo=E)/h (7.3.38)
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The solution is therefore

U;(x) = Nyef*, r<—%
Uyr(z) = Npjcos(kz) + Njsin(kz) -2 <z <L (7.3.39)
Urrr(z) = Nrrre™P* x> £,

as before, we have discarded un-normalizable solutions in regions I and I1, thus the sign of
the exponents follows this choice. In this case the potential is always finite, thus we require
both continuity of the wave function and of its first derivative. This yields the following
four conditions:

Wi(=4) = (=)
Vi (=5) =¥ (=35)
7.3.40
V(%) =Yr(%) ( )
U (5) =9 (35)
We first concentrate on the even solution:
U(z) = U(-x), (7.3.41)

thus yielding Ny;; = Ny and Nj; = 0. The four continuity conditions above then reduce
to the following:

Nye=PE/2 = Nypcos(kL/2)
{ Nipe PE/2 = Nprksin(kL/2) ° (7:342)
thus yielding
kL
% = tan (2) . (7343)
Recalling that
k = V2mE/h (7.3.44)
p = 2m(Vy — E)/h, (7.3.45)
we have
2 2 2m oo 2
P24k = S [E*+ (Vo — E)*+2(Vy — E)E] (7.3.46)
2m
= ﬁvg (7.3.47)
= K (7.3.48)

Since p/k > 0, we can solve this taking

Zé _ (tan <k2L>)2 (7.3.49)

k:j S S 1 (7.3.50)
k2 ~ (cos(kL/2))2 ’ e
thus we have that the values of k satisfy
k
—| = |cos(kL/2)] (7.3.51)
ko
kL
tan 5 > 0 (7.3.52)
Similarly, for the odd solutions:
V() = —-VU(-z), (7.3.53)
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1.0

\\
0.8 1 !

0.6

—— COS(kL/2)
sin(kL/2)
| —— kiko
0.4 1 )
‘\
\ \
0.2
0.0 . . :
0 /L 2n/L 3m/L an/L
k

ko 5m/L
Figure 7.3.4: Graphical solution of the non-linear equations (7.3.51) and (7.3.55). Depend-
ing on the value of ky, a number of intersections between the arcs and the straight line can
be found. In the case depicted, there are 3 even solutions (intersections of the straight line
with the blue lines) and 2 odd solutions (intersections of the straight line with the orange
line).

we must have Ny;; = —Ny and Nj; = 0, thus

Nie=PE/?2 = —Nyrsin(kL/2)
Nrpe=PE/2 = Nirkcos(kL/2) °
and the condition to be satisfied is

(7.3.54)
k .
” = |sin(kL/2)] (7.3.55)
ko
kL

tan? < 0.

(7.3.56)
The non-linear equations (7.3.51) and (7.3.55) can be solved numerically. Graphically, the

solutions corresponds to the intersections of a straight line with slope 1/kq and arcs given
by the trigonometric functions |cos(kL/2)| and |sin(kL/2)|. These are shown in Fig. 7.3.4.
Example wave functions corresponding to the even solutions are shown in Fig. 7.3.5. A

very remarkable feature is that these wave functions all have finite support in the region
|x| > L/2, meaning that there is a finite probability of finding the particle outside of the

classically allowed region, since classically a particle with £ < Ey wouldn’t have enough
energy to escape the well. This phenomenon is one manifestation of quantum tunneling, i.e.

the ability of quantum particles to “escape” potential wells, effectively tunneling through
them rather than crossing them like for classical systems.
7.3.3 Delta Potential
V(z) = —ad(x),
84
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— n=1
— n=3
1.0 A —_— n=5
0.5 1
=
= 0.0
>
_0.5_
_1.0_
2L —-L —L/2 0 L/2 L 2L

Figure 7.3.5: Example of spatially even stationary states for the finite-well potential. The
3 states correspond to the same value of Vj shown in Fig. 7.3.4.

with a > 0, and the Schroedinger Equation for the stationary states is
n? Pu(x)
2m  Ox?

We now consider the case of bound states (thus, E < 0), thus in the region = < 0, where
V(z) = 0 we have an exponential form for the wave function. Posing p = /2m|E|/h, we
have :

—ad(x)¥(x) = EV(z). (7.3.58)

U_o(zx) = Ae " + Bel”. (7.3.59)

From this equation we can immediately conclude that A = 0, otherwise ¥(xz — —o0) ~ 00
would lead to a non-normalizable state. Similarly, in the region = > 0 the wave function

must have only the component
U (z) = Fe™P". (7.3.60)

We now use the boundary conditions we have derived in the previous discussions, and first
enforce continuity at z = 0, thus leading to B = F. We then use the discontinuity condition
on the first derivative:

, , _ 2ﬁ a+e€
T'(e) — ¥'(—e) = 2 V(x)¥(z)dz, (7.3.61)
2 a-+te
= —ah%l 8(z) ¥ (x)dz, (7.3.62)
2m
2m

and using the explicit form for the derivatives we get
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fixing the energy through the only admissible value of p :

m

po= ag, (7.3.65)
2
E = —%. (7.3.66)

We have thus found that this potential admits only a single bound state, and ¥(z) =
Be~*1*|  with the constant B determined through normalization, leading to:

VIMQ szl

(7.3.67)

7.4 Scattering states

We now analyze solutions of the Schroedinger equation that are not normalizable, yet play
an important role to analyze the dynamics of quantum systems.

7.4.1 Wave Packets

Consider the Hamiltonian of a free particle

3 p
H = — 7.4.1
2m’ ( )
whose eigenstates are just the eigenstates of the momentum with energies %:
A p2
H = — 7.4.2
P = L), (742)
where
(zlp) o (7.4.3)
x = . 4.
P 27h

The difficulty with these eigenstates is that they are legitimate solutions of the time-
independent Schroedinger equation, but they are not legitimate physical states, since they
are not square-normalizable. However, we have seen that a generic solution of the time-
dependent Schroedinger equation for time-independent hamiltonians is

0 (0)). (7.4.4)

S
—
~~
~—
~
Il
(9]

|
-
7

The time evolution for the free particle hamiltonian is particularly easy in momentum
representation,

<mw>=/@@v@wwmm (7.4.5)
:/MMW%WWW@> (7.4.6)
— et (W (0)). (7.4.7)

86



7.4. Scattering states

In coordinate representation the expressions are a bit more complicated, but can be easily
found using the representation of the momentum eigenstates in coordinate space:

@lv) = [ dolelp) (o) (7.48)

P e~ (p[W(0)) (7.4.9)
N p 4.
i h
= [ad ~igfant (a0 7.4.10
/ Vo F Vi 0) (7.4.10)
1 cp(z—x . p2
= ﬂ/dx'w(x',O)/dpel D it (7.4.11)

7z7r/4 1712)2m
,/2 € /d$ P(x',0)e’ = (7.4.12)

We thus see that, in real space, what happens is that the initial wave functions is convolved

with a time-dependent kernel ei%m. Both in real and momentum space however we
immediately notice that if the initial state is normalized then it will stay normalized at all
subsequent times. In this sense, the unnormalized states (x|p) only play a mathematical role
in the solution of the time-evolution of a given initial and physically valid wave function.

7.4.2 Group velocity

The time evolution of a free wave packet, as we have seen, depends on the specific form of
the initial state, (p|¥(0)) = ®(p), the time-evolved packet is given by

/ o Sl )(I)(p). (7.4.13)

While the details will depend on the function <I>(p), there are however some general prop-
erties that we can deduce in the case in which we assume that ®(p) is a smooth function
centered around some momentum p and with a relatively small width Ap. Since the integral
is then dominated by points around p, we can start by considering a Taylor expansion of
the energies around that momentum:

p2

B - P 4.14
® = o (7:414)
]32
e T (p p) +O(Ap?) (7.4.15)
= E@p )+E( p)(p — p) + O(Ap?), (7.4.16)
thus
W) = T [ (R g (1417)
x7 2 e 1 v e
\/277 P P
e—tED)t/h i((s+hﬁ)w7E () St)cp . ) (7 4 18)
= I Se 5 S
vV 27h g
i(E' (p)p—E(D)) £ (o4 _
e (s+p) ’
= T [ g (SR E-E0D) g5 4 5 7.4.19
= (s+p) ( )
i(E'(p)p—E(p)) £ _
e P "(p
e T [ (BB ()n) g 7.4.20
Nore p (») ( )
= o E@-E®R) iy (¢ — E'(p)t,0). (7.4.21)

This expression is particularly interesting because it tells us that the form of the time-
evolved wave packed (apart from a phase factor) is approximately equal to the initial state
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but in a moving frame z'(t) = x — E’(p)t. This means that, for example, the maximum of
the wave function will move with a velocity:

vy = E'(p) (7.4.22)

: (7.4.23)

this velocity is known as group velocity, and it corresponds to the velocity that a classical
free particle of initial momentum p would have. It should be also noticed that this expression
is valid as long as the quadratic corrections to the energy can be neglected, thus when

t
Ap?— 1 7.4.24
P < ( )

thus for time scales given by the inverse of the momentum spread of the initial state

mh
t —. 4.2
< Ap? (7.4.25)
7.4.3 Step Potential
We now analyze the step potential
0, <0
V(z) = v (7.4.26)
Vo >0,

which admits scattering states only. We will consider two cases F > Vi and E < V),
and in both cases the solutions of the Schroedinger equations will be extending infinitely
away for x — —oo, and are thus non-normalizable. Eventually, we will be interested in
considering the physical situation in which the (unnormalized) stationary states of this
potential are used to determine the dynamics of physically valid (normalizable) states,
through a superposition of the stationary states, as previously done for free particles. Before
doing that, we need to study in some detail the stationary states.

7.4.3.1 Stationary states for £ >V}
We start our analysis with the case E > Vj. Calling

ki = \/2mE/h? (7.4.27)
k2 = VvV 2m(E - V())/hz, (7428)

we see that the Schroedinger equation in both regions of space has the same form and reads,

V() + k¥ (z) = 0 (7.4.29)

V() + k305 (z) = O, (7.4.30)
thus

U_(z) = Ae™M? 4 Bemihe (7.4.31)

U (z) = Ce*2® 4 De=the (7.4.32)

where we have 4 constants (A4, B,C, D) to be determined (in addition to the energy E).
Physically, we will be interested in studying the dynamics of wave packets in this potential,
and we will consider the situation in which we have an initial wave packet, with finite
positive momentum, thus effectively moving from the left (z = —oc0) to the right (z > 0).
For this reason, we will consider only solutions with D = 0. Using then the usual conditions
of continuity of the wave function at x = 0 we get:

A+B = C, (7.4.33)
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whereas the continuity of the first derivative yields
tkhiA—ikhB = ikoC, (7.4.34)

thus combining the two equations we have

B k1 — ko

— = 4.

A ki + ko’ (7 35)
c 2k

— = . 4.

A [ (7.4.36)

We can get further insight into the meaning of these coefficients by evaluating the probability
current to the left and to the right of the step. We recall the expression for the probability
current:

St = P [(i@*(m,t)) U(a,t) — Uz, t)* (ai\l/(ac,t)ﬂ. (7.4.37)

2m
h (0
= %Im {\Il(x,t) (axlll(gc,t))], (7.4.38)
thus
Jo(z,t) = %Im[(A*e‘iklx—l—B*eiklx) (Aikie™* — Bikie=™1*)]  (7.4.39)
_ MR g
= — (4P -1Bl%), (7.4.40)
and
L) = D [(0re ) (Cikaee")] (7.4.41)
T
= —-lo” (7.4.42)

The left current can also be written as the difference of two currents,
Je = Ja—Jp, (7.4.43)

where J4 and Jpg are the currents of the two individual components. It can also be remarked
already that currents in this case are all time independent, as it should be since we are here
considering time-independent states. In particular, because in the continuity equation

OpJ +0,|¥(x,t)> = 0 (7.4.44)

there is no time dependence (the second term is zero) we see that also that the current
should be space independent 9,.J = 0 for stationary solutions. We can verify this checking
that the current does not have any spatial dependence, for example

hk BJ?
Jo = —LAP (1 - |A|2) (7.4.45)

m

hky | o ki — ko \
= AP (1- 7.4.4
") ( (h+%a)> (7.4.4)

hk Ak k
= AP | —2 (7.4.47)
m (k1 + kz)

and

hko [ 2k \°
Jo = |A]P—= 7.4.48
L= et () (7.4.48)
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thus J. = Js. Since the probability fluxes are made out of three different components,
Ja (an incoming wave), Jp (a reflected wave), Jo (a transmitted wave) it is often useful
to reason in terms of reflection and transmission coefficients. The reflection coefficient is
defined as

JB

R = 7. (7.4.49)
A
|B|?
ki — ko’
— <k1+kz) (7.4.51)
< 1, (7.4.52)
whereas the transmission coefficient is
T = j—c (7.4.53)
A
ko |C’|2
4k1ko
= — = 7.4.55
CETSE (7.4.55)
< 1. (7.4.56)

It should be remarked that in general these coefficients are not just the ratios of the waves
amplitudes, but are really defined as ratios of probability currents (this is particularly clear
of the transmission coefficient, which is T # |C]?/|A|?). Also, as expected,

R+T = 1. (7.4.57)

7.4.3.2 Stationary states for £ <V}

In this case we replace the wave vector ko with the decay constant,

p2 = 2m(Vp — E)/R? (7.4.58)

such that
U_(z) = AeM® 4 Bemhe (7.4.59)
U (x) = CeP?* 4 De P27, (7.4.60)

and we can already set C' = 0 to have a bound solution when x — co. Imposing the usual
continuity conditions at x = 0 we now get

B kl - ’ipg
- = == 7.4.61
A k1 +ip2 ( )
D 2k,
- = — 7.4.62
A kl + ipg ( )
In order to evaluate the reflection coefficient, we write the first ratio as:
B Z(]{/‘l - ipg)
= = = e 7.4.63
p2 +iky
= —— 7.4.64
P ( )
2 | 12)id0(E)
G hvieis (7.4.65)
(P35 + kf)e=10(E)
= —¥0(E) (7.4.66)
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with

0(E) = arctanﬁ (7.4.67)
P2

E
= arctan/ i E (7.4.68)

Notice that in this case the reflection coefficient is

2

B
= —_— .4.
R ‘ = (7.4.69)
X 2
- ‘—e“(E)‘ (7.4.70)
- 1. (7.4.71)

The fact that the reflection coefficient is one means that there is no transmitted current,
however it should be remarked that this is not the same as saying that the probability of
finding a particle over the barrier is zero. Finite currents in this context are rather to be
interpreted as the existence of non-normalizable plane-wave solutions, thus since on the
right of the barrier we have a normalizable exponentially decaying wave function, we also
have that these solutions do not carry momentum, thus they have zero current:

h
S = Im ULV (7.4.72)
h
= —E|D\21m[p2672p2m] (7.4.73)
= o, (7.4.74)

implying also that J. = J4 — Jg = 0, thus

Ja = Jg, (7.4.75)
Jo = 0. (7.4.76)

7.4.4 ‘Wave Packets

We can now form physical solutions of the time-dependent Schroedinger equation, consid-
ering the time evolution of some initial wave function |¥(0)), that in momentum space we
take to be ®(p) = (p|¥(0)), such that is sharply peaked around a certain value p (you
can think for example that we are taking a gaussian wave packet in momentum space,
with mean given by p, but the precise form is not too important, provided that the wave
function is peaked around p and that other momenta are suppressed. Furthermore, we will
concentrate our analysis on the two cases in which either the initial state is exactly non-zero
either for p < pg or for p > py, where we have introduced the characteristic momentum of
the barrier,

Po = V 2mV07 (7.4.77)

2mVy
ko = h (7.4.78)
7.4.4.1 p>po
In general we have that
oo
U t) = / dEe= B (B (0)) (x| E) (7.4.79)
0
however we use the fact that the initial state is vanishing for £ < Ej, thus
OOdE Aeik1z L Be—ikiz —iE(k1)t/R EIU(0 <0
bty = 9B ¢ e )he (EEO) (7.4.80)
Jir dE (Ce>®) em ER)R(E|0(0)) x>0
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and changing integration variables we have

m

\I’<x t) _ hz fkooo dlﬁkl (Aeivklr 4 Befiklm) efiE(kl)t/h(I)(kl) <0 (7481)
’ B Jo dkaks (Cet*am) e B0 (ky) x>0

We can split the wave function into three contributions (incoming, reflected and transmit-
ted):

Uine(z, ) + Upep(z, t
W(z, 1) oc § Lme(®8) F Wret(@, 1) @ <0 (7.4.82)
\I/tran(x, t) >0
that read
Uine(x,t) = / dky A(ky)etF1ze BRG] ) (7.4.83)
ko
Uoep(z,t) = dky B(ky e 1@ e EROYRG (L) (7.4.84)
k
o -
Uiran(z,t) = / dkyC (ke k1 e = Bk Ay (L), (7.4.85)
ko

where A(k’), B (k), C (k) are smooth functions of momentum. The first term describes an
incoming wave packet, whose group velocity can be found again in the case when ®(p) is
strongly peaked around some momentum p, thus the wave packet maximum moves as

x = L (7.4.86)

with the constant velocity p/m. However notice that Wi,.(z,t) is defined only for x < 0,
thus it is clear that this solution is valid only if ¢ < 0.

For W,.¢(x,t) we have that W,t(—x,t) has the usual functional form we have studied so
far for wave-packets, thus implying that

z = Ly (7.4.87)

m
We have then a peak when z < 0, as before, but in this case we must have t > 0. Thus the
image is that this term indeed corresponds to a wave that stems from the reflection from
the barrier at t = 0 and starts moving after the reflection happens.

Finally, for Wi an(7,t) we recall that k3 + k2 = k2, thus the wave-packet moves at the
group velocity

Utrans = akgE(kQ)‘ﬁ(k2) (7488)
= h(p) (7.4.89)
f 4.
52 2
= YPF R (7.4.90)
m

This solution is valid for z > 0 and ¢t > 0, thus it coexists with the reflected wave that travels
52 _ 12
in the opposite direction and the wave packet travels with a positive velocity %.
In conclusion, in this case we have that the incoming wave packet is partially reflected
(with the same velocity, in modulus, of the incoming packet) and that the transmitted wave

packet instead moves beyond the barrier with a reduced velocity.

7.4.4.2 p<npo

The last case we consider are wave packets such that the initial state ®(p > py) = 0 thus
we only take superpositions of eigenstates with £ < V. The time dependent solution in
momentum space is then found using superpositions of the stationary states we found for
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7.4. Scattering states

E <V, however we will only consider the behavior of the wave-packet in the region x < 0,
where the analysis can still be carried with the approximate tools we have developed so far.
In that region, we have

W(z,t) o { 0 ey ky (et — @2i0(B)gmiki) o—iBROURG (k) x <0, (7.4.91)
thus
\I/inc(xa t) — dk_lklezk1fce—zE(k1)t/h¢)(kl) (7492)
0
Upep(z,t) = — / dly ey 20F) =ik o= Bk (], ). (7.4.93)
0

The most important difference with respect to the previous case is that the coefficient of
the reflected wave (B, in the previous section) is not real as before but it is actually a pure
phase: B/A = —e?%(F) This will change the previous analysis of the wave-packet velocity
we have done, since we need to expand also §(F(k)) around py and not only the energy,
thus

20(F) — kiz — E(k1)t/h  ~ const + 20k, 0(E)|zk1 — kiz — E'(k)t/h, (7.4.94)

thus this is equivalent to the transformation

x = —x+ 20 0(E)|; (7.4.95)
= —z+A, (7.4.96)
Recalling that
§(F) = arctan Vi B (7.4.97)
we have
h2
O 6(E) = Owé(E) ki, (7.4.98)
m
and
Oi(E) = - ! (7.4.99)
B - 2\|E, - E) -
> 0 (7.4.100)
thus
A, = 2aE5(E)|ﬁ% (7.4.101)
= AL (7.4.102)
m
_ k1 (7.4.103)
m\| E(V, — B)’

where £ = p?/2m, giving a displacement for the peak of the wave-packet:

—r+ A, = Lt (7.4.104)
m7
x = —%(t—At). (7.4.105)

This result is therefore telling us that there is a time delay (remember that A; > 0) in the
propagation of the reflected wave. The reflected wave thus moves back with the same speed
of the incoming wave, but at a later time than expected.
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7. WAVE MECHANICS

7.5 References and Further Reading

A general discussion on Schroedinger’s formulation of wave mechanics is found in Saku-
rai’s “Modern Quantum Mechanics” (Chapter 2, sections 2.4 and 2.5), even though the
discussion in there does not cover some of the more basic details we have covered in our lec-
tures. Cohen-Tannoudji’s book contains instead a comprehensive study of one-dimensional
problems, both in the case of bound and scattering states. (Chapter 1 in general and
complements H1 and J1 are recommended reads).
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Chapter 8

Angular Momentum

In this Chapter we study angular momentum, which is a concept of fundamental importance
in mechanics. When we have introduced the momentum operator as well as the Hamiltonian
operator, we have made the important observation that these operators emerge as generators
of certain physical operations. This is the case of the translations (for the momentum) and of
time evolution (for the Hamiltonian). Another fundamental operation that we can perform
on a physical system is the ensemble of rotations. We will see in this Chapter, that the
very concept of angular momentum in quantum mechanics emerges from the properties of
rotations. In this Chapter we first introduce the angular momentum and its commutation
relations, and then study the general properties of its spectrum and eigenstates.

8.1 Rotation matrices

We start by recalling some important properties of rotation matrices, that will be instrumen-
tal in deriving angular momentum in the quantum setting. Let us consider a 3-dimensional
system, specified by a vector of coordinates v = (v, vy,v,) = (v1,v2,v3). In general, any
rotation can be expressed as the action of a 3 x 3 matrix R, such that the transformed
coordinates read:

v = Rv. (8.1.1)

We can find conditions on the matrix R noticing that the scalar product between two
rotated vectors must be preserved by the rotation:

view' = veow, (8.1.2)

thus

Z ZRijUj <Z Rikwk> = Zviwi (8.1.3)
( J k i
Z (vjwe) Z RijRix, = Z viw;, (8.1.4)
ik i i
which is satisfied if the matrix is an orthogonal matrix:

> RijRy = 9 (8.1.5)

RRT = 1. (8.1.6)

In general, all orthogonal matrices have det R = +1, but in the following we will study
only rotations such that det R = 1. These are called orientation-preserving rotations, since
they do not involve flipping axes, for example, but rather only continuously changing the
coordinate system.
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8. ANGULAR MOMENTUM

In order to understand the general properties of Ritis very useful to expand the matrix
R for small rotations:

R = I+6p, (8.1.7)

where p is a 3 X 3 matrix we wish to determine and that characterizes both the rotation
direction and angle of rotation. We can compute the inverse infinitesimal rotation to be
just R=Y = I — §p, as it can be easily checked

RR™Y = (I+6p)(I —dp) (8.1.8)
= 14+0(8?).

1

Since the rotation matrix is orthogonal: RRT =] , or equivalently RT = R~ , we then have

RT = R (8.1.10)

(f+5ﬁ)T - [-dp (8.1.11)

pro= —p, (8.1.12)

thus the infinitesimal rotation matrix must be antisymmetric p;; = —pj;, or explicitly

written:

0 P12 P13
ﬁ = —pP12 0 P23 . (8113)
—p13 —p23 O

The three independent components of the matrix p then fully determine the infinitesimal
action of the rotation operator. We can now conveniently define a vector 8 = (61,62, 63) in
terms of the 3 independent components:

92 = p13 (8115)
93 = —pP12- (8116)

Notice that she sign convention relating the components of 8 to the matrix elements of p
is arbitrary and boils down to choosing whether the rotations are to be taken clockwise or
anti-clockwise. Were we have used the widely adopted anti-clockwise choice that allows to
write the matrix elements compactly as:

pij = —€ijkbk, (8.1.17)
where we have introduced the antisymmetric Levi-Civita symbol

1 cyclic permutations of (1,2, 3)
€k = 4 —1 cyclic permutationsof (1,3,2) (8.1.18)
0 i=j,j=kori=k.

With this convention, an infinitesimal rotation then reads

Rij = 05— eijndty + 082, (8.1.19)
k

and the transformed vector

v = Y R (8.1.20)
J
= Ui—ijkvj(mk, (8.1.21)
ik
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8.1. Rotation matrices

but the last term is nothing but a cross product, since in general

(axb), = Y ejraib (8.1.22)
j
(axb), = - Z €ijkbjar (8.1.23)
ik

Vector-wise we can write the infinitesimal rotation as
v = v+ (60 xv), (8.1.24)
thus the meaning of the vector §8 is really what we would expect from a rotation along the

6 direction, and the vector is rotated by an infinitesimal angle |00| along that direction, as
also shown in Fig. 8.1.1.

516

ov

Figure 8.1.1: Geometrical meaning of formula (8.1.24).

8.1.1 Rotations do not commute

A very important feature of rotations is that rotations across different directions do not
commute. This can visually understood very easily when considering rotations across dif-
ferent axes, as shown in Figure 8.1.2.

In order to explicitly compute the commutator, we can consider two infinitesimal rota-
tions through the directions da and §3. If we apply first the a rotation and then the 3
rotation we get

R(B)ROa)v = R(GB)(V+ax v+ %ZS(a)v +...) (8.1.25)
= v+iaxv+IiBxv+08x (daxv)+
+%2 (S(@)v+8(B)v) + 0(6%), (8.1.26)

where we have formally introduced the second order development of the rotation matrix
S(0), that we won’t compute explicitly for the moment. The composition of the two
rotations in the other order gives the same expression but with a <> 3, i.e. :

R(B)R(OB)V = v+axv+68xv+dax(68xv)+
+§ (S(a)v + S(ﬁ)v) +0(6°), (8.1.27)

so we see that the commutator applied on the vector v is given by

[R(68), R(6a)lv = 88 x (ba x v) —da x (68 x v) + O(6%). (8.1.28)
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z
|
|
|

z z
| |
| |
| |
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| |
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-
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X7

R (7/2) R (m/2)
X - g
x7 g

V4

z
[
| |
|
R (m/2) R (7/2)
x~ ’ -
Y

Figure 8.1.2: Rotations do not commute: in the top Figure, a book is first rotated by 90
degrees in the z direction and then by 90 degrees in x direction. In the bottom Figure,
the book is first rotated by 90 degrees in the x direction and then by 90 degrees in the z
direction. The final outcomes are clearly different, showing that the order in which rotations
are performed is important, thus rotations along different axes do not commute.

To further evaluate this expression we recall that the cross product is not associative but
it rather satisfies the Jacobi identity:

AX(BxC)+Bx(CxA)+Cx(AxB) = 0, (8.1.29)
and also the elementary antisymmetric property

AxB = —-BXxA, (8.1.30)

therefore

0B x (da x v) — dax x (683 x V) 08 x (da x v)+da x (vx68) (8.1.31)
—v X (08 X dax) (8.1.32)

= (08 xda) x V. (8.1.33)

The commutator among the infinitesimal rotations then gives an interesting result:

[R(68), R(6a)lv = (68 x da) x v (8.1.34)

R(88 x da)v — v, (8.1.35)

and is therefore equivalent to a rotation of an angle O(4?) in the direction B x a. We also
see, instead, that rotations in the same direction (683 parallel to da) clearly commute, this

means that a non-infinitesimal rotation along a fixed direction can be found by many (N)
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8.2. Rotation operator

repeated applications of an infinitesimal rotation of size § = 1/N :

RO) = Zvlgnooé(aa)...zfz(ao) (8.1.36)
= Nli;noonLR(O/N) (8.1.37)
= Nl@@ﬂﬁ&(ﬂﬁ/}\f) (8.1.38)
= exp(p), (8.1.39)

thus an exponential of the 3 x 3 matrix p. For example, if 6 = (0,0, f3) one can compute
the rotation matrix explicitly as

0 -1 0
R(fs) = expbs|[ 1 0 0 (8.1.40)
0 0 0
cos(f3) —sin(f3) O
= sin(f3)  cos(f3) 0 |, (8.1.41)
0 0 1

which exactly coincides with the familiar expression for rotations in the z direction. Simi-
larly for the other directions:

0 0 O
R = expb[ 0 0 —1 (8.1.42)
01 0
1 0 0
= 0 cos(f;) —sin(6y) |, (8.1.43)
0 sin(fy) cos(fy)

which coincides with rotations in the x direction of an angle 6, and finally

0 01
R(0y) = expb| 0 0 0 (8.1.44)
-1 0 0
cos(fz) 0 sin(fz)
= 0 10 , (8.1.45)
—sin(f2) 0 cos(f2)

coinciding with rotations along the y direction. It should be remarked here that we have
derived these matrices using purely algebraic techniques and only making use of the ele-
mentary property of rotations, namely condition (8.1.2).

8.2 Rotation operator

In quantum mechanics, we assume that every rotation described by R is in one to one
correspondence to some operator that transforms quantum states accordingly, ﬁ(R) Since
we have seen that rotations matrices are themselves uniquely identified by the vector 6,
we will just call the quantum mechanical operator ﬁ(@) As we have done for the momen-
tum operator and for the time evolution operator, we can then also associate a quantum

mechanical rotation operator to the rotations, such that a rotated ket is written
o) = D(O)[¢). (82.1)

It should be noticed that, while defined in terms of a 3 x 3 matrix, the operator 15(0)
however acts on the Hilbert space spanned by state vectors and not, in general, on the
regular three-dimensional cartesian space. The action of this rotation operator therefore
needs to be specified in terms of the requested properties on the kets.
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8. ANGULAR MOMENTUM

As much as done for the other transformations we have studied so far, also for rotations
we expect:

(Vo) = (¥|D'(6)D(6)|W) (8.2.2)
= (0|D). 8.2.3

thus the operator is unitary:
Di@)DO) = 1. (8.2.4)

The second property we expect from this operator, is that it can be arbitrarily composed :

D(0.)D(62) = D(6:6:), (8.2.5)

where 816, denotes the composite rotation R(6,02) = R(61)R(0,). Furthermore, if we
rotate a certain system back to its original state, this operation should be equivalent to
applying the inverse transformation:

D(-0) = D7(9), (8.2.6)

where D~ denotes the inverse of the operator.
The last property that we can intuitively expect is that in the limit of vanishing rotations
the operator D should strictly reduce to the identity
lim D(60) =1. (8.2.7)
6—0
As we have already seen for the case of the time evolution operator, and as a consequence
of Stone’s theorem, all these conditions are satisfied if we take an infinitesimal rotation
operator to be described by an exponential of a Hermitian operator:

J.se

D(0) = e Th, (8.2.8)

where once again this transformation defines the angular momentum operators

I o= (Jy, o Js) (8.2.9)
= (Ja, Jy, J2). (8.2.10)

> ’_‘K‘)
> b)
S

)

8.3 Commutation Relations

In order to establish the commutation relations among the different components of the
angular momentum, we recall that for infinitesimal rotation matrices we have found

[R(58), R(6a)] = R(68 x da) — 1. (8.3.1)

Since we have postulated a one to one correspondence between rotation matrices and rota-
tion operators this also implies that for infinitesimal rotation operators we must have:

[D(0B),D(da)] = D(68 x ) — 1 (8.3.2)

The left hand side of this equation is
[D(68), D(6ar)] = (f - %j : 5) (f - %j : a> +

‘ 5) (8.3.3)

— ff[j 8,3 al, (8.3.4)
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8.3. Commutation Relations

and the right hand-side is
DB x 6a)— T — —%523 (Bxa), (8.3.5)
thus equating the two
J-8,J-a] = ihkJ-(Bxa). (8.3.6)

This equation must hold for arbitrary directions v and 3, thus we can take for example
them to be parallel to two of the unit vectors o = aje; and B = B;e; , yielding

[Ji, J;] = ihJ - (e; x €j) (8.3.7)
= Zhj Zei/jrkei/ej/ek (838)
'3’k
= ihY €. (8.3.9)
k

This relation is most often written dropping the explicit summation over k, since that
is redundant, and it yields the following compact expression for the commutators of the
different components of the angular momentum:

[Ji,Jj] = iheiji. (8.3.10)

Equation (8.3.10) is the fundamental commutator relation for angular momentum opera-
tors and, together with the canonical commutation relations, is one of the cornerstones of
quantum theory.

A remarkable difference with respect to the case of linear momentum, P = Pz, Dy, Pz)s
is that in this case the generators of the angular momentum do not commute among them-
selves. The lack of commutativity of the rotation matrices R then directly implies also the
lack of commutation of the J operators.

8.3.1 Finite Rotations

We have analyzed so far the rotation operator for infinitesimal transformations, of order
6. As a consequence of the non-commutativity of the angular momentum operators in the
different directions, also rotations along different directions do not commute and the order
in which they are realized is important. However, rotations along the same direction clearly
commute, thus we can write the finite rotation operator as a product of many infinitesimal
transformations, in such a way that for finite rotations:

D@) = e R, (8.3.11)

8.3.2 Rotations of vector operators

In order to further understand the properties of the angular momentum operator, let us
consider some vector observable

vV o= (Vo,V,, V) (8.3.12)
= (1, Va, Vh), (8.3.13)

with three components such as, for example, the spin operator S = (S’w,gy,gz) or the
position operator ¥ = (Z,¢, 2). Intuitively, physical properties obtained rotating states
or, alternatively, rotating observables should be the same. We then require that, for two
arbitrary kets |¢) and |¢):

(00| VIve) = (6[Voly), (8.3.14)
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8. ANGULAR MOMENTUM

or, in words, that the matrix elements of the operators are the same regardless of whether
we rotate the kets or we rotate the operator. In components, this reads

(Gl Vilvo) = > Rij(O)(@lV;|v), (8.3.15)
J
and expanding the rotated states in terms of b(@) we have
(@ DI OV DO)|¢) = > Ris(0)(|Vi|v), (8.3.16)
J

and since this must be for all |¢)) and |¢), this implies that

DYO)V;D(6) = > Ri(0)V;. (8.3.17)

If we now consider again the infinitesimal form of the rotation operator, we have that the
left hand side of Eq. (8.3.17) reads

DOV, D(0) ~ <1 + % Zaekjk> Vi (1 - ;Zaakjk> (8.3.18)
k k
~ 1 A A
= Vits Xk: 60 [Jx, Vi]. (8.3.19)

In order to compute the right-hand side of of Eq. (8.3.17), we recall that

Y ROV = Vi+ (60 x V) e (8.3.20)
J
= Vit | D evjndtiVier | -e; (8.3.21)
ik

= Vit €tV (8.3.22)

i/j/
= Vi+ Z €ji00kV; (8.3.23)

ki
= Vi=> €indtiV; (8.3.24)

ki

Equating the two we then get

[ AFPSEN .
ﬁ[JkaVi] = *Zfijij (8.3.25)
J
PN .
E[Ji; Vil = ) eV (8.3.26)
J
[T, V] = —ihz ik Vi (8.3.27)
J

and finally exchanging k «+— j and removing the redundant sum, we recover a more familiar
form:

[Ji,Vi] = iheijnVi. (8.3.28)

We therefore see that the commutator relations among different components of the angular
momentum, Eq. (8.3.10), are just a special case of Eq. (8.3.28) when we take the vector
operator to be the angular momentum itself: V = J.
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8.4. General properties of Angular Momentum eigenstates

8.4 General properties of Angular Momentum eigenstates

Having defined the characteristic commutation relations for the angular momentum opera-
tors, Eq. (8.3.10), we are now ready to study some general properties of its eigenvalues and
eigenvectors. It is useful to introduce another operator, defined as the sum of the squares
of the different components of the angular momentum:

J2 = g dydy 4 dd (3.4.1)

= J2 4 Ji 4+ J2. (8.4.2)

This operator has the property that it commutes with all the components of the angular
momentum.

Theorem 11. [jg, ja] =0 for any component of the angular momentum o = (z,y, z).

Proof. Consider for example,

2,0 = Uedo+ Jydy+ Jodz, J2) (8.4.3)

= [Jude + Jydy, J2] (8.4.4)

= JolJey L)+ [y o) e + Jy[dy, J) + [y J2),, (8.4.5)

= —iliJ,Jy — ihdyJy +ihJyJ, + ihJyJ, (8.4.6)

0. (8.4.7)

The other cases are left as an exercise. O

Since J2 commutes with all the components of the angular momentum, it is possible to
find simultaneous eigenkets of J? and one of the three components. Mostly for historical
reasons, it is the case that one choses to find simultaneous eigenkets of J? and J., but other
choices are possible. In the following we will concentrate on the task of determining the
cigenvalues of J2 and J..

8.4.1 Ladder operators

Similarly to what already done when studying the harmonic oscillator, it is convenient
to work here with non-hermitian operators, called ladder operators, taken to be linear
combinations of the x and y components of the angular momentum:

Jip = J.+id, (8.4.8)

These operators do not commute, and satisfy

T, J ] = [Ju+idy, e —i,)] (8.4.9)
—i[ o, Jy] + [j J.] (8.4.10)
= 2i[J,, J.] (8.4.11)
= 2hJ., (8.4.12)
and also
(Jo,Je] = [Jo,Je i) (8.4.13)
= [, Jo) i, ] (8.4.14)
= ihJ, +i(—ihJ,) (8.4.15)
= h(+J, +iJ,) (8.4.16)
= +hJy. (8.4.17)
It is also easy to check that the ladder operators commute with J 2. since they are just a
linear combination of operators that commute with J2, thus
(2, Js] = [J ) +i[J% )] (8.4.18)
= 0. (8.4.19)
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8.4.2 Eigenvalues of J2 and J,

Armed with the ladder operators, we are now in position to derive the spectrum of eigen-
values of J? and J,. Since we are looking for common eigenkets of these two operators, we
write the eigenvalue equation as

J?la,m) = h%ala,m) (8.4.20)
J.la,m) = hml|a,m), (8.4.21)

where the & factors are introduced for dimensionality consistence. We are thus labeling the
common eigenkets with |a, m) and the real numbers a and m are the eigenvalues of the two
operators, and need to be determined from our analysis.

First of all, we analyze the action of the ladder operators on these eigenkets. For
example, we can ask what is the ket resulting from the action of the ladder operators on
the eigenkets. We first analyze the action of J, on such states:

JoJila,m) = ([jz, Ju]+ jijz) la, m) (8.4.22)
= +hJila,m) + EmJy|a, m) (8.4.23)
= h(m=£1)Jx|a,m) (8.4.24)

thus we see that the ladder operators increase or decrease the eigenvalue of J. by hA. They
are called ladder operators precisely for this reason: they go up and down in the ladder of
(discrete, as we will see) eigenvalues of the z component of the angular momentum.

The behavior of J2 on the “laddered” states is different though :

F2Jila,m) = ([j27ji]+jij2) la, m) (8.4.25)
= h2aJila,m), (8.4.26)

thus the ladder operators do not change the eigenvalue associated to J2.
Another property we can readily identify is that

a>m? (8.4.27)

as it can be demonstrated noticing that
(a,m|2|la,m) = |J.|a,m)|? (8.4.28)
> 0, (8.4.29)

and similarly for the y component, thus
a = {(a,m|J?a,m) (8.4.30)
= (a,m|J?|a,m) + (a,m|j§\a,m) + h?m? (8.4.31)
> hPm? (8.4.32)

Because of this inequality, it follows that for fixed a, there must be a maximum allowed
value of m, that we call my .. Specifically, this is defined by the condition that the raising
ladder operator cannot produce a state with larger eigenvalue my.x + h, otherwise this
would violate the inequality (8.4.27). We thus have

Jila, Mmax) = 0. (8.4.33)

Multiplying this equation from the left with J_ and using the fact that

J gy = (Jo—idy)(Je +iy) (8.4.34)
= 2+ Tl +idd, —idyJs (8.4.35)
= J?—J?—nl, (8.4.36)
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we have
J_Jila, Mmax) = (j2 - hjz) |2, M) (8.4.37)
= 1 (a’ - m1211ax - mmax)|aa mmax> (8438)
= 0, (8.4.39)
2

which is verified only if (@ — mZ ., — Mmax) = (@ — Mmax(1 + Mmax)) = 0, thus for fixed a
we have that the maximum allowed value of m is given by

Mmax(l + Mmax) = a. (8.4.40)

Using a similar argument, we can show that there must be also a minimum value mpin,
thus

J_|a, M) = 0, (8.4.41)
and in this case
Jod = (et id) (s —idy)
= 24 I2—idudy +idyd,
= J2-J*+nl., (8.4.42)
thus
j+j_|a, Mmin) = (j2 — jZQ + hjz) |a, Mmin) (8.4.43)
= 1 (a—mp, + Mumin)|a, Muin)
= 0,
yielding
Muin(Mmin — 1) = a. (8.4.44)

We therefore see that we must have myax = —mmin in order to satisfy both Eq. (8.4.40)
and Eq. (8.4.44). Not only m takes quantized values, but it is bound in

—j<m<j, (8.4.45)

where we have defined j = mpax. Since the difference between the maximum and minimum
eigenvalue must be an integer, we conclude that 2j = integer. Examples of possible values
are

j=0 , m= (8.4.46)
1 11

o1 _ 17 8.4.47

j=g5 . m 53 ( )

j=1, m=-1,01 (8.4.48)
3 3 113

.3 _ 2 11> 4.4

J 2 9 m 27 27 2) 9 (8 9)

, (8.4.50)

Eigenstates of J? are conventionally denoted by the integer or semi-integer j rather than a
itself, and we have

J2ljmy = B+ 1)]5.m) (8.4.51)
J.j,m) = hm|j,m). (8.4.52)
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8.4.3 Matrix Elements

We can now also determine other matrix elements for the angular momentum operators.
Specifically, we have constructed the ket |j,m) in such a way that is an eigen-ket of J?
and J,, thus the matrix representation of these operators will be diagonal. The main
remaining matrix elements to be computed are between the other components of the angular
momentum, J, and jy It is more convenient to work again with the ladder operators. We
have seen that the j+ operator increases the m component by one, thus

Jeljm) = Cyli,m+1), (8.4.53)

where C is a constant to be determined. We can determine C considering that

R ATl (8.4.54)
= (Jym|J-Jslj,m), (8.4.55)
and using Eq. 8.4.36, we have that
IC4? = R[G+1) —m(m+1)], (8.4.56)
similarly we have
J_|ljym) = C_lj,m—1), (8.4.57)
and
IC_)P = R[i(G+1)—m?+m], (8.4.58)
= R[G+1) —m(m—1)]. (8.4.59)

Thus, taking a convention where these matrix elements are real, we get

Jelgm) = h/GG+ 1) —mlm+ 1)]j,m+ 1), (8.4.60)
J_ljm) = i@ +1) —m(m—1)j,m—1). (8.4.61)

8.5 Spin 1/2 case

In the previous sections we have developed the general theory of angular momentum oper-
ators, satisfying the general commutation relation, Eq. (8.3.10). As we have also discussed
in sec. (8.3.2), the concept of angular momentum is rather general and concerns the trans-
formation of all 3-dimensional vector operators, not only real space coordinates. In fact,
we have already seen such an example, albeit in disguise. As we will now show, the spin
operator is a specific example of momentum operator.

We recall that we have defined the spin 1/2 operator to be the 3-dimensional vector of
operators:

- I
S = =(64,6y,6,), (8.5.1)

[\

where we recall the definition of the Pauli matrices:

Gy = (? é) (8.5.2)
6y, = (? _ol> (8.5.3)
5. = ((1) _01> (8.5.4)
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8.5. Spin 1/2 case

We can immediately identify the three components of the spin with those of a legitimate
angular momentum operator: (S, Sy, S;) = (Jz, Jy, J=). We can in fact verify that

[Sa;Ss] = ihSyeap,- (8.5.5)

For example, explicit computation of this commutator in one case yields:

S - 8 O)-(2 )] oo
_ %2 ( é fi ) (8.5.7)

= ihS.. (8.5.8)
The total angular momentum is
&2 R s 2 2
S = T (62+0;+052) (8.5.9)
3 ..
= thl, (8.5.10)

where we have used the fact (easy to check) that each of the Pauli matrices squares to unity.
We therefore see that in this specific case the spin operator corresponds to a momentum
operator with j = %:

A 1 1 3 1 1

202 i\ o201 1

Selj= 5™ :|:2> h 4‘] 5 M :t2> (8.5.11)

N 1 1 h 1 1

SZ | — =, =4 = +— 17 = -, = +— . 8,5,12
I 2> 2 ’j 2" 2> (8.5.12)

Analogously, the ladder operators for spins 1/2 S, =8, + ZS'y can also be explicitly
computed:

> (8.5.13)

1
0
0
0 ) , (8.5.14)

and it is left as an exercise to show that these increase and decrease, respectively, the
eigenvalues of S,.

IC’))

I

>
/~

8.5.1 Spins and Rotations

When we introduced the notion of spin, in the first lecture, we were already expecting the
spin to be “quantum equivalent” of the intrinsic angular momentum of an object. In this
sense, reconnecting the properties of the spin operator to those of the angular momentum is
certainly reassuring. However, we have seen that one of the fundamental notions in quantum
physics is that observables are connected to symmetry operations, and that the angular
momentum is intrinsically connected to the notion of rotational operators. What kind of
rotations then are connected to the spin degrees of freedom. To answer this question, let
us recall that the rotation operator defining angular momentum was given by Eq. (8.3.11),
thus for spin 1/2

D@) = e 59, (8.5.15)

To see that this is truly a rotation of the system, we can for example consider a rotation
along the z direction, thus 6 = (0,0, 6,) such that

D(.) = e w50, (8.5.16)
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8. ANGULAR MOMENTUM

We expect that the 3 components of the spin to rotate according to the rotation matrix
along the z direction, which has the well known form

A cosf, —sinf, O
R(0.) = sinf, cos6, 0 |, (8.5.17)
0 0 1
in such a way that
(So., = R(S). (8.5.18)

We can easily verify that this equation is non-trivially satisfied by the spin operators. For
example, if we take the expectation value of S, after the rotation we have

(Se)o. = (Vo.|S:|Ws.) (8.5.19)
= (U]erO0: G e 750 W), (8.5.20)
where the form of the rotated operator is computed explicitly using the matrix representa-
tions:
(k8.0.g kS0, = P EF 0 0 LY [ e 0 ) s
: AN AC D AR B
h eF 0 0 i
= = . i 8.5.22
2 ( 0 e iF ) ( eTiF 0 ( )
h 0 ewz
- ! ( R ) (8.5.23)
h 0 cos @, h. 0 sin 6,
D) ( cosf, 0 ) Tyt < —sinb, 0 > (8.5.24)
= S, cos(f,) — S’y sin(6,), (8.5.25)
thus
(Wy. |82 W) = (0[S, |T)cos(.) — (U|S,|T)sin(d.) (8.5.26)
(Sz)e. = (Sg)cos(6;) —(Sy)sin(6,), (8.5.27)

as expected for the x component of Eq. (8.5.18).

8.6 References and Further Reading

The discussion in this Chapter is adapted from Sakurai’s “Modern Quantum Mechanics”
(Chapter 3, sections 3.1, 3.2, 3.5), that presents a remarkably modern way of introducing
angular momentum. Cohen-Tannoudji’s book also contains a short discussion on the con-
nection between rotations and Angular Momentum in its Chapter 6, at the beginning of
complement Byt, even though the main topic (Chapter 6, is not presented as in Sakurai’s).
As you might also see from other more “traditional” textbooks, one way of presenting an-
gular momentum is by means of orbital angular momentum, a topic we won’t introduce
in this course before the next Chapter. As we will see, orbital angular momentum is just
a special case of the angular momentum operators presented in this Chapter. Thus, the
more fundamental (and maybe more elegant, depending on your taste) way of introducing
angular momentum is not through orbital angular momentum but rather through rotation
operators, as we have done in the previous discussion.
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Chapter 9

Orbital Angular Momentum

Orbital angular momentum is maybe the most intuitive form of angular momentum. In
this Chapter we will study the properties of orbital angular momentum, using the general
theory we have developed in the previous Chapter.

9.1 Orbital Angular Momentum operator

Classically, orbital angular momentum is defined as
L=rxp, (9.1.1)

In the quantum mechanical setting, we can use the correspondence principle to find the
operator equivalent of (9.1.1). This is achieved promoting dynamical variables to op-
erators r = (z,y,2) — © = (Z,4,2), and similarly for the momentum operator, p =
(Pz, Py, P2) = P = (Py, Dy, D~). The components of the orbital angular momentum operator
L= (LT, ﬁy, ﬁz) can be found remembering that

(axb), = Zeijkajblm (9.1.2)
ik
yielding
L. = p. — 2p, (9.1.3)
L. = ipy— ipa (9.1.5)

We can then compute explicitly commutators between different components of the orbital
angular momentum, just using the fundamental commutation relations between positions
and momenta. For example:

(Lo, Ly] = [9p: — 2Py, 2Pa — 3p-] (9.1.6)
= [0z, 2Pa] — 0Dz, 2D2] — [2Dy, 2Pa] + [2Dy, £D-] (9.1.7)
= pa[pz, 2] + 2Py (2, P:] (9.1.8)
= ih(—3ps + Zpy) (9.1.9)
= ihL.. (9.1.10)

In general, it can be shown that
[La,Lg] = iheapy L, (9.1.11)

thus orbital angular momentum, as an operator, satisfies the same commutator relations
(8.3.10) we expect from a general angular momentum operator.

Exercise 12. Demonstrate Eq. (9.1.11).
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9. ORBITAL ANGULAR MOMENTUM

9.2 Rotation Operator

By explicitly computing the commutator relations of the components of the orbital angular
momentum, we have shown that L satisfies the properties of a rotation operator. We
haven’t explicitly shown however what kind of rotations this operator performs. We will
now show that L is associated to rotations of the coordinate system. Let us consider for
example a rotation by an angle 6, around the z direction, such that the rotation vector
reads 6 = (0,0,6,). At the beginning of the previous Chapter, we have recalled that real-
space rotations along a certain direction are fully encoded by 3 x 3 matrices. For the case
of rotations along the z axis, we have that this matrix takes the explicit form:

R cosf, —sinf, O
R(O) = sinf, cosf, 0 |. (9.2.1)
0 0 1

This matrix acts on coordinates, thus we can write rotated eigen-kets of the position oper-
ator as

r(0)) = R(O)r) (9.2.2)
(9.2.3)

= |(cosB,)x — (sinh,)y, (sinb,)x + (cosb,)y, z),
which in the limit of a small rotation angle becomes

r(60)) = R(66)|r) (9.2.4)
|z — 00.y,y + 00z, z), (9.2.5)

thus the amplitudes of a quantum state in this rotated frame read:

(r(00)y) = o(z—0d0.y,y+d0.z,2) (9.2.6)
— (r) + 66, (—y&gir) + xa?;r)) . (9.2.7)

Now, we would like to compare this expression to what we would obtain considering the
rotation operator defined in terms of the orbital angular momentum

D) = e il (9.2.8)
The action of the rotation operator on a basis ket is:

r'(8)) = D(O)r) (9.2.9)

L)) (9.2.10)

thus the amplitudes of a given quantum state in this basis (rotated by D) are

(W (O)) = (r]eF0|y). (9.2.11)

Notice that the expression for the amplitudes above can be interpreted in two equivalent
ways: either we rotate the basis eigen-kets |r'(8)) = D(8)|r) and keep the state [¢)) un-
changed, or we keep the basis eigen-kets unchanged and rotate the state in the opposite
direction, thus |¢)) — D(—0)[¢) = DT()[¢)). In the limit of small angle, the rotation
operator D1(66) defined in terms of the z component on the angular momentum reads

S 9.2.12)
= i+ %5@@ t.. (9.2.13)
- i+ %&)z (&g — Tbs) + - - (9.2.14)
= 1460,(20, —90s) + ... (9.2.15)
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9.3. Representation of L in Spherical Coordinates

z

X (r, H, (0)

9,
N
R

X

Figure 9.3.1: Spherical coordinate system adopted in these notes.

thus

(' (00)[) = (rle’ %), (9.2.16)

0ur) | OU)
R )

(9.2.17)

which is identical to the expression found using the rotation matrix, Eq. (9.2.7), also
implying that [r/(00)) = |r(66)). We therefore identified rotations of the coordinate system
along the z axis with the action of the operator D(6) with @ = (0,0,6.) and the orbital
angular momentum L.

The same argument can be repeated for all the other directions x,y and it is easy to
verify that the other components of the orbital angular momentum correspond to rotations
in the respective directions.

9.3 Representation of L in Spherical Coordinates

In order to analyze the eigenfunctions of the orbital angular momentum, it is much more
convenient to consider the representation of L in spherical coordinates (r,0,¢), rather than
cartesian ones (z,y,2). There are several possible conventions for spherical coordinates,
here we adopt the following definition

r = rsinfcos¢
= rsinfsing (9.3.1)
z = rcosé.

A sketch of this coordinate system is found in Fig. 9.3.1.

We can then express the three components of the angular momentum operator in this
system. To this end, it is necessary to consider the form of the gradient operator in spherical
coordinates. Consider for example derivatives with respect to the angle ¢, that controls
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9. ORBITAL ANGULAR MOMENTUM

rotations around the z axis:

o  0r 0 oy 0 0z 0
9 ~ 00 060y T 040 (9:3.2)
.. 0 . 0
= —rsm951n¢%+rsm9005¢a—y (9.3.3)
0 0

On the other hand, we can immediately connect this result to the representation of L, in
cartesian coordinates

L. = ipy— i (9.3.5)
(.0 .0
= —ih <xay - y&}) (9.3.6)
.0

The z component of the orbital angular momentum has therefore a very simple expression
in terms of gradients with respect to the azimuthal angle, and, in this coordinate system,
it closely resemble the action of a linear momentum operator.

Deriving the other components is a straightforward, yet laborious extension of what we
have already seen for the z component. The first step is to consider the gradients in polar
coordinates as linear combinations of gradients in cartesian coordinates, differentiating Eq.
(9.3.1) we have:

o, AR WA
o | = % 2 % a, (9.3.8)
2 B FAY
sin 6 cos ¢ sin 0 sin ¢ cosf Oy
= rcosfcos¢ rcosfsing —rsinf oy |, (9.3.9)
—rsinfsin¢g rsinfcoso 0 0,

where you can notice that the last line of this matrix is what we had explicitly derived
in (9.3.2). The second step is to consider the inverse transformation, so to express the
cartesian derivatives as a linear combination of the spherical derivatives. This is obtained
inverting the 3 x 3 (Jacobian) matrix above, and, after a lengthy and heartless calculation
we omit here, we have:

Oy sinfcos¢p <= QTCOS ¢ _ :;‘fe Oy

9y | = | sinfsing cxfsme  cosd 9 |- (9.3.10)
! ino

0. cos 6 - 0 04

The third and final step is to express the x and y components of the orbital angular
momentum in terms of these derivatives, finding

Lo = 9p. —2py (9.3.11)
= —ih(§0. — 20,) (9.3.12)
= —ih(rsinfsin¢) (cos 00, — Sm989> + (9.3.13)
r
+ih (1 cos 9) (sin@sin $Or + COSGSIH¢89 + CO,S¢ 8¢> (9.3.14)
rsind

= ¢h(sin qﬁg + cot 0 cos QSQ (9.3.15)

N 06 a9 )’ o
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9.4. Eigenfunctions

for the x component, and similarly for the y component

L, = Z2p,—ip. (9.3.16)
= —ih (20, — 20,) (9.3.17)

) . cos f cos ¢ sin ¢
= —ifi(rcosb) | sinf cos p0, + Op — ——0s | + (9.3.18)

r rsin 0
+ili (r sin 0 cos ) (cos 00, — Smaa@) (9.3.19)

r
= —ih (cos (b% — cot fsin ¢>aa¢> . (9.3.20)
With these definitions, we can also find explicitly expressions for the ladder operators
Ly = L,+il,
- 0 0

= +het? (= +i — . 3.21
he (30 zcot@a > (9.3.21)

Similarly, using the definition of L2 in terms of the ladder operators:

A 1/~ - A oa
2 = P2+3 (L+L, + L,L+) , (9.3.22)
and after another lengthy calculation we omit here one gets

Y I AN S GNP
= Lin295¢2+sin980 sinf=5 )| - (9.3.23)

Exercise 13. Derive the expression in Eq. (9.3.10) explicitly as well as the expression in
(9.3.23) for L? in spherical coordinates.

9.4 Eigenfunctions

Armed with the representation of the orbital angular momentum in spherical coordinates,
we are now ready to study its eigenstates. As done for the general theory of angular
momentum, we consider again common eigenstates of L, and L?, such that

L2,m) = KA1 +1)|1,m) (9.4.1)
L.l,m) = hm|l,m). (9.4.2)

As we have seen from their explicit expressions, Eqgs. (9.3.23) and (9.3.7), both operators
depend only on the angles 6 and ¢ and are completely independent on the radial component
r. This implies that also the eigenstates, in polar coordinates, will have a factorized form.
At fixed value of | and m, the eigenstates of the orbital angular momentum are then the
product of a function of  and ¢ times a radial function. They are conventionally written
as:

(r|ll,m) = @%(T)Y#(Q,(ﬁ), (9.4.3)

where ®! (r) is a radial function and the functions Y;! (6, ¢), encoding the angular part, are
called spherical harmonics. The normalization condition that the eigenfunctions satisfy is,
in general,

Qomlt,m) = [ arlel (1Y, 6,00 (9.4.4)
e’} 27 T

= ([ aretore?) < ([ a [T avsmionvio.0P) 045
0 0 0

= N/™x N§ (9.4.6)

= 1, (9.4.7)
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9. ORBITAL ANGULAR MOMENTUM

thus taking the form of a product of two normalizations, one for the radial part, and one
for the angular part. The conventionally adopted choice, which is also quite convenient for
all calculations, is to take the two factors identically equal to 1, thus we require

o0
/ ar|ol ()2 = 1, (9.4.8)
0

for the radial part, and the normalization condition for the spherical harmonics is instead

27 T
/ d¢>/ dosin(0)|Y(0,0)> = 1 (9.4.9)
0 0

Notice that the radial function ®. (r) cannot be determined from the general eigenvalue
equations we have written above, and it is thus arbitrary, provided that the normalization
condition, Eq. (9.4.8), is verified. In the following we will concentrate then only on the
non-trivial angular part, and study the properties of the spherical harmonics, as well as the

associated spectrum of eigenvalues [ and m.

9.4.1 Eigenvalue equation for L,

We start with the case of ﬁz, for which the eigenvalue equation projected onto spherical
coordinates takes the form

(r|L.|l,m) = hm(r|l,m). (9.4.10)

Recalling the representation of the L. operator in the spherical coordinates representation,

A 0
L, = —ih—, 9.4.11
ihs (9.4.11)
we have that the spherical harmonics satisfy the following differential equation
0
SRS YA0.0) = hm®l (YA 0.0) (9.4.12)

thus we see that it is independent of the radial part,

0
—m%m(e, ) = hmYl(6,0). (9.4.13)
Moreover, this equation does not carry any differential dependence on 6, thus it is satisfied
by separation of variables

Yo (0.0) = xp(0)e™?. (9.4.14)

From this expression we can also make a very important deduction on the possible values
taken by m and [. The general theory of the angular momentum tells us that m is either
integer or semi-integer and takes values in

“1<m<l (9.4.15)

However, for orbital angular momentum there is a little surprise! If we assume that the
eigenfunctions of the angular momentum are single-valued (an assumption which is essential
if we wish to use these functions as a basis in which to expand arbitrary wave-functions)
we must have that

Yi(0,¢+2m) = Y.(0,0), (9.4.16)

thus €2 = 1 and m must be an integer, ruling out the possibility of a semi integer value.

In turn, this implies that [ itself is an integer, and the allowed eigenvalues are

m=—1----3-2,-1,0,1,23,...1] (9.4.17)
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It should remarked that this spectrum of eigenvalues is in stark contrast with what happens
for spins, that instead are allowed to take also semi-integer values of orbital angular momen-
tum and not only integer values. This also explains why the Stern and Gerlach experiment
was a “smoking-gun” (direct proof) for the existence of an intrinsic angular momentum,
the spin, of the electron as opposed to the orbital angular momentum. The observation of
an even number of possible values of m (m = £1/2,in the SG experiment) indeed is not
compatible with orbital angular momentum, that for any value of [ allows only for an odd
number of m states.

9.4.2 General eigenvalue equation for L2

The other equation satisfied by the spherical harmonics is the eigenfunction condition for
L2

(0,0|L|1,m) = B+ 1)(0,8[l,m), (9.4.18)

and using the explicit form for L%in spherical coordinates, Eq. (9.3.23), we get the following
differential equation

1 0%, 1 9 (. 0,
781n29@Ym(97¢) + m% (Sln@agym(e,¢)> =+
+1I+1)YL(0,¢) =0 (9.4.19)

however recalling that the ¢ dependence is fixed by Eqs. (9.4.13), we have

a—QYl 6,0) = ingl (6, ¢) (9.4.20)
(:)(bg m\”’ - 8¢ m\”’ M
= —m?Y.(0,0), (9.4.21)

thus we can completely remove the ¢ dependence from Eq. (9.4.19), leading to

sin 9% <sin9§9><in(9)) + [l +1)sin?0 —m?| x4, (0) = o. (9.4.22)

This differential equation is equivalent to the associated Legendre equation, and its solution
is denoted P/"(cos) = x!,(f) and can be found in many textbooks. Then, apart from a
normalization factor, we have Y () o e P™(cos@). The overall normalization can be
found recalling the orthonormality conditions

<la m|l,7 m/> = 6ll'5mm/7 (9423)

implying

27 ™
/ / }/Zm(ea (ﬁ)*}/;’n/ (0? ¢) sin 9d9d¢ = 6@,@’5m,m’ (9424)
0 0

and can be used to fix the overall normalization of the spherical harmonics. Furthermore,
it is customary in physics literature to take a phase convention such that the spherical
harmonics are complex valued and satisfy

Yrme,e) = (=D)"Y"(0,9)" (9.4.25)

Overall, these two conditions fix the final form to be

20+ 1)(¢ — [m|)1]?
4m (€ + |m))!

Y, ¢) = (—1)(mtImD/2 ( "% PI™ (cos 0) (9.4.26)

where P/ (cosf) are associated Legendre functions.
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We quote some of the first few spherical harmonics, that can be useful in exercises. The
lowest spherical harmonic is just a constant,

YJ(6,¢) = ——= (9.4.27)

Yﬂ:l :F\ / 87 sin Qeiw

then for [ = 1 we have

: (9.4.28)
=14/ 43 cos 6
T
and for [ =2
Yﬂ = 32 sm2 Pet2iv
T
15 44
Y2,(0,0) =F o sin 0 cos fe™"% (9.4.29)
YE(0, ) = “16 (3cos®f —1).

Higher spherical harmonics can be found in books, if necessary.

9.4.3 Recursive relation

An alternative approach to derive explicit expressions for x! (), as in Eq. (9.4.14), is based
on the ladder operators, similar to what we have already done for the harmonic oscillator.
Specifically, we know that for the maximum allowed value of m, (m =) we must have

Lyl = o, (9.4.30)
thus
. ) 0
(x|Ly|l,l) = hew(I)in(r)(aeJrzcotHaqﬁ) L@)eite (9.4.31)
= F,(r09) <§9><§(9)—lcotexf(0)> (9.4.32)
= 0 (9.4.33)

We then have that the differential equation satisfied by X% is

<§9x§(9) —lcot 9)(5(0)) = 0, (9.4.34)

which has solution (easy to check)

b0 = cu(sinf), (9.4.35)
where ¢;; is a normalization constant that can be determined imposing the normalization
condition, Eq. (9.4.9). Omitting the explicit calculation of the normalization constant, the
spherical harmonic in this case reads:

Y 0,0) = cpe®(sing)l. (9.4.36)

The spherical harmonics for smaller values of m can then be found by repeated applications
of L_, since we know from the general theory of angular momentum that

L |l,m) = C_(I,m)|l,m —1), (9.4.37)
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with C_(I,m) = hy/I(I + 1) — m(m — 1). We then find:

l _ 1 —io (9 et 2\ v
Y., 1(0,¢) = cum) X e (5‘9 zcot98¢ Y. (0,6) (9.4.38)
m 0
b, 1(0) = % X (%an(@) -+ mcot fon(ﬁ)> . (9.4.39)

The latter expression is a recursive relation that allows us to systematically compute all
the spherical harmonics, starting from the explicit expression we found for Y}'(6, ¢).

9.4.4 Some properties of Spherical Harmonics

While in the previous discussion we have only quoted the final result for the spherical
harmonics, since its derivation is not conceptually interesting beyond the mathematical
aspect, it is important though to know some general properties of the orbital angular
momentum eigenfunctions.

One important property is that spherical harmonics are orthonormal, which implies

27 T
/ do / d9sin(0)YL (0, )Y, (0, ¢) = 611G (9.4.40)
0 0

and that all functions F(6, @) of the solid angles 6 and ¢ can be written as a linear combi-
nation of these basis functions:

F,9) = i zl: camY (0, 0), (9.4.41)
=0 m=—1
or in ket form
(@,01F) = > (¢,0l,m)({l,m|F) (9.4.42)
lm
thus the coefficients ¢y, = (I, m|F) read
(I,m|F) = /0 - do /0 ! sin 0dOY.! (6, ) F (6, ). (9.4.43)

From the general expressions for the spherical harmonics, Eq. (9.4.26), we can also im-
mediately notice that spherical harmonics with m = 0 are purely real. This results from
the fact that the normalization constant ¢;; defined above has an arbitrary phase, which is
traditionally fixed in such a way that

Y0,6) = (~)"Y(6,0)". (9.4.44)

Since the square modulus of the spherical harmonics does not depend on the angle ¢, a
useful way of plotting them is presented in Fig. 9.4.1. From this Figure it can be noticed
that [ = 0 state, also known as “s state”, is spherically symmetric, thus it has no preferential
angular direction. The | = 1 states, known as “p states”, instead have different 8 dependent
shapes. For [ = 1, m = 0 for example we can see that that there are two lobes, such that
they have a zero in the zy plane.

9.5 References and Further Reading

The discussion in this Chapter shows the main conceptual steps required to construct the
spherical harmonics, but some more laborious (and less interesting) steps have not been
reproduced. Cohen-Tannoudji’s book contains, in Chapter 6, a thorough discussion of all
these technical aspects. The interested reader is then invited to look in there for more
details.

117



9. ORBITAL ANGULAR MOMENTUM

I=1,m=0 I=1,m=%1

I=2,m=0 [=2,m=%1 I=2,m=%2

Figure 9.4.1: Polar plots of |Y;™(6, ¢)|?
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Chapter 10

Central Potentials

In this Chapter we will study the Schroedinger equation for a particle in 3 dimensions and
subjected to a central potential V' (r), thus depending only on the distance from the center
of coordinates r = \/x2 + y2 + 22. This is a case of paramount importance in physics, since
potentials such as the Coulomb interaction intrinsically have radial symmetry as in this
case. Analogously to the classical case, the Hamiltonian takes the form

~2

N D R
H = —+V 10.0.1
L+ Ve, (10.0.1)
with the first term corresponding the kinetic energy,

n2

>~ D
K = 5 (10.0.2)
K2 0? 0?2 0?
= o (8:1:2+8y2+ a) (10.0:3)
K2 9
= —— 10.0.4
IR (10.0.4)

where we have called M the mass of the particle.

Since the potential depends only on the distance r = ||, and not on the angle, it is clear
that when rotating the coordinate system of an arbitrary angle the potential energy will not
change. This implies that the potential energy commutes with the rotation operator ZA)(B)
and in turn that also the components of the orbital angular momentum must commute with

V.

Lo, V] = 0, (10.0.5)
and as a consequence

(L, V] = o. (10.0.6)

Moreover, the kinetic term also commutes with the rotation operator 15(0), since p? is the
norm of the vector p = (P, Py, P-) and by construction we have seen that rotations in any
direction do not change the norm of vectors, thus

[Lo:$?] = 0 (10.0.7)

[L2,p°] = o. (10.0.8)
It then follows that the whole Hamiltonian commutes with the orbital angular momentum
operators

Lo, H] = 0 (10.0.9)
(L2, H] = o. (10.0.10)
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The reader interested in a formal proof of these commutators can find it in 10.6.1.

Because of the last two relations, we can immediately deduce that the states |I, m) we
have found in the previous Chapter are also eigenstates of the Hamiltonian, and that a
generic eigenstate of the Hamiltonian is therefore of the form we previously found:

(rll,m) = ' (r)Y.(0,9). (10.0.11)

In the previous Chapter we had seen that the radial part, ®!(r), is an arbitrary function that
cannot be determined diagonalizing the orbital angular momentum only. In this Chapter
we will show that the radial function satisfies a one-dimensional Schroedinger equation (for
the radial variable ) with a modified potential energy, that we can call Vg (r) and that we
will determine in the following.

10.1 Kinetic energy

The expression of the kinetic energy can be greatly simplified using the angular momentum
operator. In order to do so, we consider the important identity

2 = p2p? - (f-.f))2+7jhf-.f)7 (10.1.1)

whose demonstration is straightforward but a bit lengthy, and can be found in 10.6.2.
Identity (10.1.1) can be projected onto a ket in spherical coordinates space, |r) = |r, 8, ¢)
and we obtain

blee) =

However the last term is easily expressed in spherical coordinates, recalling that

[F?p* — (8- D) + ihi - p]|1)). (10.1.2)

T% _ T(gjféijJr‘;z;y gié‘?z) (10.1.3)
= 22 ya% N Za% (10.1.4)
= r-V, (10.1.5)
thus

(r|lt-plY) = —ihr-V(r|y) (10.1.6)
= —ih (ri(r | 7,/})) , (10.1.7)

and similarly for the second term
(r|@-p)?[v) = (|G -p)E-P)V) (10.1.8)

p
(r;) (r | ). (10.1.9)

Combining all these results we arrive to the following expression for the kinetic energy
operator in the Hamiltonian

K82 20 r|L2|y
v = -~ <ar2+rar> <‘“'¢>+<2’ML>' 10.-1.10)

1
oar ™
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Physically speaking, this kinetic energy contains two parts that are easy to recognize: a
term corresponding to the rotational kinetic energy (the second term) and another term
that corresponds to the radial kinetic energy.
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10.2. Radial equation

10.2 Radial equation

We have previously seen that the Hamiltonian commutes with L2, thus the eigenfunctions
of the Hamiltonian must be also eigenfunctions of L2 and all the components Lg of the
angular momentum. The time-independent Schroedinger equation

hQ <aa:2 + i;) h(r) + <r2MTQ> +V(r)y(r) = Ey(r),  (10.2.1)

can be then simplified noticing that L% is acting on its eigenstate, thus

2 2 2
h (52 + iaar) b(r) + %w(r) +V(r)y(r) = E¢(r). (102.2)

Moreover, we have seen that all eigenfunction of the Hamiltonians are of the separable form

v(r) = 2(nY,(60,9). (10.2.3)

where ®!(r) is a radial function to be determined, and Y}, (0, ¢) are the spherical harmonics
we have derived previously.

Substituting then Eq. (10.2.3) into Eq. (10.2.2) we have that the following differential
equation has to be satisfied by the radial part:

Notice that from the beginning we have dropped the index m in the radial part (®!,(r) —
®!(r)), and it is clear from the equation above that indeed ® depends only on I. This
differential equation can be further simplified making the substitution

dl(r) = , (10.2.5)

yielding an effective one-dimensional Schrodinger equation:
h? [ 02 I(1+1)h? . .
[ ((% > + (2]\41"2 + V(r))} u'(r) = BEu'(r). (10.2.6)

10.3 Properties of the radial wave function

The 1D Schroedinger equation for the radial wave function u!(r) is an important result of
the previous section, because it allows us to map the complicated 3D Schroedinger equation
on a case that is easier to analyze, both for numerical and analytical studies. The radial
equation (10.2.6) is entirely equivalent to a one-dimensional Schrodinger equation in the
radial variable, for a particle moving in an effective potential

I(1+1)h?

1

Vg (1) SN2 + V(r). (10.3.1)
The term l%}}gf ® is known as centrifugal barrier and it is a repulsive force that increases

for larger angular momenta [. Intuitively, what happens then is that at higher angular

momenta the effective force felt by the atom increases, and, as we will see, states of large [

correspond to wave functions in which the atomic density is “pushed away” from the origin.
The radial wave function has also other general properties that we can deduce here.
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10.3.1 Normalization

We start recalling that the overall wave function of the problem has been separated into a
radial and an angular part, in a way that

P(r) = (Y.L (0.0) (10.3.2)
l
= “ﬁ”mw,@, (10.3.3)

and that the overall normalization for the wave function is
/dr|1/)(r)|2 = / drr2\q>l(r)|2/d9|m(9, })|2, (10.3.4)
0

and that since the spherical harmonics are already normalized to 1 over the angular variables
(see discussion in the previous Chapter), we are left with the normalization condition

/OO driu'(r)? = 1. (10.3.5)
0

We therefore see that u!(r) is, to all practical purposes (including normalization), a one-
dimensional wave-function for a particle constrained in the region 0 < r < oco.

10.3.2 Small r limit

In the limit of small distances  — 0, the radial equation (10.2.6) can be used to find general
properties of the radial wave function. We start making the assumption that u!(r) ~ r® for
small r, where s is some power we want to determine. With this assumption, we have

K2 I(1+1)A?
T g(g— 152y DT
s(s )r + i

s5—2 s _ s
i r T+ V(r)r® = Erf. (10.3.6)

So far we haven’t made any assumption about the central potential itself, but we need to
make sure that it has some reasonably good behavior when approaching the origin. Here
we make the assumption that the central potential is sufficiently regular, i.e. it can be
divergent at the origin, but with a power such that at least

lim 72V (r) = 0, (10.3.7)
r—0
notice that this is the case, for example, for the Coulomb potential V' (r) ~ 1/r. If this is
the case, then the dominating term for small values of 7 is the powers 72, thus in order to
cancel the divergence in (10.3.6), we need to have that the terms proportional =2 cancel
out, thus requiring
s(s=1)=1(+1), (10.3.8)

which is satisfied for two possible values:

s=1+1 (10.3.9)
s=—l. (10.3.10)

This in turn implies that either u!(r) ~ ' or u!(r) ~ %, for small distances. However,
recalling that [ > 0, we now argue that only the first solution is acceptable. If, for [ > 1, the
second possibility is considered, we would then have a divergence at the origin that would
violate the normalization condition (10.3.5), which is clearly unacceptable. For I = 0, the
normalization could be still satisfied, however this would imply that ®!(r) ~ 1/r, and this
comes with other issues. An intuitive argument for this is that the 3-dimensional kinetic
energy would then behave as

VQ% = 473 (r), (10.3.11)
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10.4. Coulomb Potential

thus for the energy E to be finite, we would need the central potential to compensate
the delta singularity. However, because we are considering here only regular potentials
satisfying (10.3.7), we argue that u'(r) ~ 1/r! is not an allowed behavior. In conclusion,

we must have
ul(r) ~ i, (10.3.12)

for small r, and the probability density of finding the particle at the origin is always van-
ishing, since for [ > 0
[u'(0)> = 0. (10.3.13)

10.4 Coulomb Potential

We now specialize our discussion to the very important case of a Coulomb potential. We
consider here the case in which a single electron (we ignore its spin degrees of freedom) feels
the interaction potential due to a nucleus of charge Ze. If we make the assumption that
the nucleus is much heavier than the electron, we can neglect the motion of the nucleus and
only consider the electron motion in the field of the nucleus. Notice that this assumption is
very well verified in practice ,since a proton is almost 2000 times heavier than an electron
(myp/me =1836.15...). The Hamiltonian then simply reads

- P2 Ze?
= 2 (10.4.1)

2m. |7]

where m, is the electron mass. We therefore see that this is a special case of a central
potential, and that the radial equation to be satisfied is

LR 9+ DR ze
2m, Or? 2mr? r

} ul(r) = Bul(r). (10.4.2)

The potential energy goes to zero at infinity, thus bound states must have negative energy.
Focusing then on bound states only, with E = —|E|, we can get rid of dimensional factors
through the following dimensionless distance:

8me|F
= hzl |r. (10.4.3)

With this substitution the radial equation becomes

d*u {l+1) A1
— = 10.4.4
3 5 U+ ( 4) u =0, (10.4.4)

zZe? [me
A= ——,/ . 10.4.5

The differential equation (10.4.4) is still not easy to solve analytically (it’s very easy to solve
on a computer though), but we can still deduce the spectrum of eigenvalues just looking at
the asymptotic behaviors of the radial wave function.

where we have also introduced

10.4.1 Behavior at p — >
In this regime, the differential equation (10.4.4) simplifies to

d? 1
dT)Z - qu=0, (10.4.6)
which has solutions
u(p) = Ae™P/? + Bef/?, (10.4.7)

However, we have previously seen that u(p) must be normalizable, thus we must have B = 0.
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10. CENTRAL POTENTIALS

10.4.2 Regular solutions

Since we know both the large p behavior, and the small p behavior (from the general
discussion on the properties of the radial wave-function), we can attempt to find a solution
that satisfies both boundary conditions, of the form

u(p) = p' e 2R (p), (10.4.8)

where we can expect now F(p) to be a smooth, non-singular function. With this further
substitution we have

d2F <2z+2 )dF (A z+1>
e e | +(E-—=)F=o, 10.4.9
dp? p o~ \p p ( )

which we can now attempt to solve considering a series expansion for the function F'
oo
F(p)=> ", (10.4.10)
k=0

with the only constraint that cy # 0, so to guarantee that u(p — 0) ~ p!*1. With this
series expansion, we see that the coefficients ¢, must satisfy

M8

k(k—1 ckpk 24 Z 20+ 2 kckpk 24
k=1

b
[|
v

+Y kA= I+ D]ep™ "t =0 (10.4.11)
k=0

Making the change of indices kK — 1 = k&’ in the first two summations and further renaming
k' — k, we get

k(k+1) + (21 + 2)(k + V)]epp o+

WE

>
Il

0

+ ) [~k+ A=+ Dlept ™ =0, (104.12)
k=0

which is satisfied if

Ck_;,_l k + l + 1-— )\
= . 10.4.13
Ck (k+1)(k+20+2) ( )
This Equation behaves like
1
Gt (10.4.14)

Ci k—oo k’

however this is the same asymptotic behavior that you can expect from the function e”,
for which ¢ = % This behavior is therefore again forbidden, since it would imply that
u(p) ~ e” and thus the radial wave function would be not normalizable. The only possibility
here is therefore that the series expansion, Eq. (10.4.10), terminates at some value of kpax
such that ¢, = 0,Vk > kpax. The termination condition implies

Emax +1+1—=X=0, (10.4.15)

where kpa.x = 0,1,2... and recalling the definition of the factor A in terms of the energy,
we finally have that the spectrum of energy eigenvalues is given by
922 4
E=-— e2° (10.4.16)
202 (1 4+ 1 + kmax)
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Figure 10.4.1: Energy levels for the Hydrogen atom. States are labelled with the notation
nl, where n is the principal quantum number and [ is the orbital angular momentum
index. Traditionally, instead of using ! = (0,1,2,3...) one uses the spectroscopy notation
I = (s,p,d,f...). In this diagram then the ground state is the 1s state (with principal
number n = 1 and [ = s = 0). We also see that there are several excited states corresponding
to the same [, since for fixed n = 1 4+ [ + kpax there can be multiples values of integers [
and kpax that add up to the same n. For example, for n = 2 we have two states, 2s (with
I = 0,kmax = 1) and 2p (with | = 1,kpax = 0).

This can be further simplified noticing that we can define an integer, called principal quan-
tum number, such as
n=1+14+ kpax, (10.4.17)

thus yielding the quantized eigenvalues

meZ2e?
E,=——s—5, 10.4.18
2h2n2 ( )
where now n =1,2,....
For the Hydrogen atom (Z = 1), the numerical constant is given by
meet N 4
onz = 13.6 [eV], (10.4.19)

and a scheme of the energy levels is shown in Fig. 10.4.1.

10.5 Examples of eigenstates

To summarize, the eigenstates are indexed by the principal quantum number as well as by
the angular momentum indices. It is also given by

<I'|7’L,l,m> = \Ilnlm(r) (1051)
@},(r)Y;,(0, 9) (10.5.2)
= @an(@, ¢) (10.5.3)

where we have explicitly added the dependency of the radial functions ® both on [ and n,
the principal quantum number, since we showed that

up(p) = pte 2F(p) (10.5.4)
kmax
= pl“e_p/zz:ckpk (10.5.5)
k=0
n—1-—I
= pl+1eip/2 Z Ckpk. (10.5.6)
k=0

The dimensionless radial variable is given by

8m.|E

= hQ‘ |r (10.5.7)
2 [ mee?
2

= 5;40 (10.5.9)
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where we have introduced a characteristic length scale for the hydrogen atom introduced
by Bohr, and known as the Bohr radius:

h2
= 10.5.1
ao e (10.5.10)
~ 0.529[A]. (10.5.11)
52.9 [pm]. (10.5.12)

For example, these expressions allow to easily find the ground state wave function, for which
we have n =1 and [ = 0. The radial part for the ground state reads

W(p) = copeP/? (10.5.13)

1 -

3/2
*(r) = 2(@) e v, (10.5.14)
0

where the normalization constant ¢y has been explicitly computed imposing
o0
| et = v (105.15)
0

Taking into account also the angular dependence through the spherical harmonic, the full
wave function for the ground state is then

Tigo(r) = @V(r)YL2(0,0) (10.5.16)

1 _r
= € 0. (10.5.17)

Vral

From this expression we clearly see that Bohr’s radius plays the role of a characteristic
distance after which the probability of finding the electron is exponentially suppressed.
Similarly, other low-energy eigenstates can be explicitly found. We quote here a few of
them

1 o
Uopo(r) = ——= (2 - T) e 20, (10.5.18)
4N/2mag ao
1 o
Uoro(r) = 3(7‘) 240 cos 6, (10.5.19)
4v/2mai \90
1 o
Uopan(r) = . <T> %25 sin 6. (10.5.20)
8y/mag \%0

10.6 Appendix: Detailed Proofs

10.6.1 Commutators of the Hamiltonian

Here we prove that the Hamiltonian for a particle in a central potential
. P2
H = —+V(|r 10.6.1

commutes with L2 and all the components Le, of the orbital angular momentum. To do so,
we will show below that both the kinetic and the potential energy terms in the Hamiltonian
commute with L2 and L.

10.6.1.1 Kinetic Part
We start by showing that

[L2:Dz] = [2Dy — Pu; Pa) (10.6.2)
= [2py, Pa] (10.6.3)
= [2, D]y (10.6.4)
= ihpy, (10.6.5)
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and similarly for the other orthogonal component

= —[3PerB] (10.6.7)
= —[9,Py)Px (10.6.8)
= —ihp,. (10.6.9)
Also, the z components obviously commute

[L.,p:] = [iby — GPa, b:] (10.6.10)
= 0. (10.6.11)

We therefore have that the commutator of p* with the L, component is
Loy + 0y + 2] = Dollesibe] + (Lo Balba + By[Le, By] + (L2, D1y (10.6.12)
= thpgpy + thpyDe — 1hpyPr — thpLPy (10.6.13)
0. (10.6.14)

Since the momentum squared commutes with the z component, it must commute also with
the other components (for example you can think of renaming z — = and « — z, such that
the above commutator reads

(Lo p2+ 92 +02] = [La,p?] (10.6.15)
= 0, (10.6.16)

and the same for ﬁy Since all components L, commute with P2 it also follows that

[L%,p%] = {Lfc,ﬁ2]+[L§,ﬁ2]+[L§,p2] (10.6.17)
— (10.6.18)

Moreover, the kinetic energy is just proportional (with the scalar 1 /2M) to p?, thus we
have proven that the kinetic energy commutes with both L,

. p?
and L2
- ]52
L, — | =0. 10.6.2
[ ,QM} 0 (10.6.20)

10.6.1.2 Potential Energy Part

The commutators of the L, operators with the coordinates are found

[L.,2] = [&Dy — Uz, 7] (10.6.21)

= —[0ps, 2] (10.6.22)

= —0[Ps, 2] (10.6.23)

= ihy, (10.6.24)

then

L, 3] [&py — D, ) (10.6.25)

= [2py, 7] (10.6.26)

= Z[py, 7] (10.6.27)

ihd, (10.6.28)
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and also
[L.,2] = [&y — P 2] (10.6.29)
= 0 (10.6.30)
We then see that
[L.,7°] = [L.,#] (10.6.31)
= [L.,#%) +[L., 9% + L, 2% (10.6.32)
= 0, (10.6.33)

and with a similar reasoning as before, the same must be true for all the other components,
thus

[Lo,#?] = [Ly, 7 (10.6.34)
= 0 (10.6.35)
and
[L2,7%) = [L2,#%) +[L2,7%) + [L2,7? (10.6.36)
= o (10.6.37)

Now if we consider that the potential is a function of the distance only, it is also a function
of r2, thus expanding the potential in a power series we see that it commutes with L2

L2V = L2 o (7«2)’“] (10.6.38)
k
= Y [ﬁ2,(r2)k] (10.6.39)
k
= 0, (10.6.40)
and f,a
(Lo, V()] = [£a7zck (rQ)k] (10.6.41)
k
= D [im(vﬂ)ﬂ (10.6.42)
k
- 0 (10.6.43)
10.6.2 L2 identity
Here we prove that
L* = % —(¢-p)* +ihi - p.

This identity can be obtained considering the definition of L? and recalling the following
relation for Levi-Civita symbols

Z €ijk€itm =  0ji0km — OjmOki, (10.6.44)

i
which can be easily proven. An explicit computation of L? then gives :
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TXp-rXp

E E Gijkfjﬁkg €itmT1Pm
lm

i gk

> (6110km — jmOk1) 5Dk 1Pm
jkim

> (#iprripe — 7iprrrp;)
ik

> (#5([Brs 5] + 7508)Pk — Pk ([P Ds] + Djx))
ik

> (#j(—=ihdk; + 750x)Pr — 75Dk (ihSk; + PiTr))
ik
> #ifiprbe — ihY Py —ih Y b — Y FipePith
Jk J J Jk
P2pP — 2iht - — > i Pri
jk

P2p? — 2ihk - = 7 ([Pr, Pi) + Frpr)
Jk

— > b (—3m +> mak>
J k

P?p? — 2iht - p + 3iht - p — (£ p)°
#2p? — (- p)? +ihi - P,

F2p? — 2ihi -

Lol

which concludes our proof.

10.7 References and Further Reading

(10.6.45)
(10.6.46)

(10.6.47)
(10.6.48)
(10.6.49)
(10.6.50)
(10.6.51)
(10.6.52)

(10.6.53)

(10.6.54)

(10.6.55)
(10.6.56)

The discussion in this Chapter discusses the eigenstates of central potentials, a topic which
is found in all quantum mechanics books. For example, Cohen-Tannoudji’s book contains,
in Chapter 7, a detailed discussion.
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Chapter 11

Composite Systems and Quantum
Entanglement

Our discussion of quantum phenomena so far has been limited to the study of systems
that consist of a single degree of freedom (for example, one spin or one particle). In this
Chapter we extend the quantum formalism in order to analyze the behavior of quantum
systems composed by many degrees of freedom. We will see that when the postulates of
quantum mechanics are applied to systems of many particles, they give rise to interesting
and counterintuitive phenomena such as quantum entanglement.

11.1 State space for many particles

Suppose we have two particles, labeled A and B. From the postulates of quantum mechan-
ics we have enunciated at the beginning of this course, we know the state of the system
comprising both particles, let’s call it AB, must be described by a ray in a complex vector
space, or in a complex Hilbert space, if A and B have continuous degrees of freedom. The
natural question to ask is then, in what space does a generic state for the two particles,
[ ap) live in? If we call Hy and Hp the vector (Hilbert) spaces in which the quantum
states of the individual particles live, then it is a postulate of quantum mechanics that a
generic state vector describing the combined system lives in a space

Hap = HaX®HB. (11.1.1)

The symbol ® refers to a tensor product, a mathematical operation that combines two
vector (Hilbert) spaces to produces another one. The meaning of the tensor product
is more easily understood in terms of explicit basis vectors, in the case of discrete vec-
tor spaces. For this purpose, let us assume that H 4 is spanned by a set of basis vec-
tors {|u1), |p2), |13), - |n, )} and that Hp is spanned by a set of other basis vectors
{Iv1),|v2), [v3), ... [Vng)}. Then, the vector space Hap is by construction spanned by basis
vectors consisting of all the pairwise combinations of the basis vectors of A and B, and the
basis states of the composite system are written as

) @ v;) ¥ i€ [l,nal,j€[l,np). (11.1.2)

The symbol ® is a mathematical operation known as “tensor product” or “outer product”
of two vectors, that we are going to characterize more in detail in the following. For the
moment, we can already see that the total number of basis states for the composite system
is ng X np and all quantum states in H 4p can be written as linear combinations of the
composite basis states:

[as) = X eili) @ ) (11.1.3)
= Zcij|)\ij> (11.1.4)
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with ¢;; some complex coefficients, and where we have defined the basis vectors |);;) =
) @ [1).

In order to work with these states, we need to know how to perform inner products
between states belonging to the tensor product space Hap. The inner product between
two basis states is defined as

Mgy = (il @ (5]) () © 1)) (11.1.5)
= (uilpr) (vilv) (11.1.6)
= 0irbji. (11.1.7)

This definition is relatively easy to understand: the inner product is obtained as the product
of the elementary (A or B) inner products. Also, it shows that the basis states of the
composite system are orthogonal by construction. As a consequence, the inner product
between two generic states of the composite system

) = Zbij|)\ij>a (11.1.8)
) = ZcijIAm, (11.1.9)

reads
(@) = D) brer (Nl Aw) (11.1.10)
i Kl
= > blenbindy (11.1.11)
i Kl

= > by (11.1.12)
ij

We also see that the basis states of the composite system satisfy the closure relation:

2Pl = L (11.1.13)

Formally speaking, the tensor product satisfies all the intuitive properties you might expect
from a product, for example, given a scalar a and two arbitrary vectors |v) € H 4 and
|w) € Hp we have

a(|v) ® lw)) = (alv)) & lw) = |v) © (a|w)), (11.1.14)

also, it is distributive, thus

(lv1) + |v2)) @ [w) = |v1) @ |w) + |v2) ® w), (11.1.15)
[v) @ (Jw1) + [w2)) [v) ® |wr) + [v) @ |wa). (11.1.16)

Finally, the construction of the product state space can be generalized from the case of
two particles to the case of many particles, A, B,C' ..., since the composite vector (Hilbert)
space will be simply given by the tensor product of the individual state spaces

Hapce.. = Ha@HpRHc..., (11.1.17)

and in general the resulting space will have a large dimension when we have many particles,
since it is the product of the size of the individual dimensions

NABC... = NaXnpXngX.... (11.1.18)
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11.1.1 Example: two spins 1/2

Let us see an example of this formalism in the case of two spins 1/2, thus when H 4 and
Hp are both vector spaces of dimension 2. As basis states of the individual spins we take
the eigenkets of S, thus the resulting tensor product space is given by the 4 states

1) ) a®|+) s (11.1.19)
2) = |[Ha®|-)B (11.1.20)
3) = |[9)a®|+)s (11.1.21)
[4) = [-)a®|-)s, (11.1.22)
and a generic state of two spins is written as
4
) = D alk), (11.1.23)
k=1
where, as always, by definition
= (k). (11.1.24)
For example, take
1
= —=(H)A®|—)B—|—)a® |+ , 11.1.25
) \/5(| )A®|=)p—|—)a®|+)B) ( )
1
= —=(2)-13). (11.1.26)

V2

we can can easily check that this is a physically valid state, since it is correctly normalized:

(¥l) ((22) + (3[3)) (11.1.27)

(11.1.28)

ol SRR

11.2 Operators

So far we have introduced the state space for a system of many particles but we haven’t
talked about the operators that act on this space, and how they are related to the mea-
surement process. If we have two operators TA and TB acting on the individual spaces, the
resulting operator that acts on the product space is also written as a tensor product:

Tap = Ta®Ts, (11.2.1)

where the resulting operator T's 5 now acts on vectors in the space H4®@Hp. The composite
operator acts as follows:

Taplhij) = (TA®TB)(\M,»>®|VJ»>) (11.2.2)

(Talus)) @ (Tolv)), (11.2.3)

thus, quite naturally, each of the two operators in the product act on the kets that belong to
the respective vector spaces. As a special case, notice that if we are given only an operator
that acts on one of the two subsystem, this is to be understood as

T = Ta®lIp (11.2.4)
if only Ty is given, and where Ip is the identity operator for subsystem B. Similarly,
Ty = I2®Tg, (11.2.5)
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11. COMPOSITE SYSTEMS AND QUANTUM ENTANGLEMENT

if only Tg is given. As a result, it is easy to see that these two operators, acting non-trivially
only on one of the two subsystems, commute since:

TipThplNg) = (fA ® TB) ( [y ® fB) i) ® |v;) (11.2.6)

= (faoTp) (Talm)  Iplv;)) (11.2.7)

= Talw) @ Tslv;), (11.2.8)

ThThslNg) = (Tawis) (laeTe)lu) @ ) (11.2.9)

- (TA ® fB) (fA|M> ® TB|Vj>) (11.2.10)

= Talw) @ Tslv;), (11.2.11)

thus

[Ta®ip,Ia®Ts = 0. (11.2.12)

11.2.1 Example: spin 1/2 operators

Let us give again a concrete example for two spins 1/2, and imagine that we are interested

in studying the total z component of the spin. If we call S§A) and S*éB) the spin operators
for the individual spins, such that

SMmya = hm|mya (11.2.13)
SBENmNg = hm!|m/)p, (11.2.14)
for m,m’ = +1/2, then it is natural to define the total spin as the sum of these two

operators. In order to do so, however, we need to recall that these operators are acting
on different spaces, thus before summing them up we need to “upgrade” them to be good
operators for the composite vector space. Thus the total S,EAB) operator reads:

SAB) = §A) g f(B) 4 [(4) g §(B). (11.2.15)

It is then straightforward to see how this operator acts on a general state. For example, if
we take a basis vector for the composite system, we have

S8 (fmya o lmyp) = (S @1 4 1) & ) (m) 4 @ ') ) (11.2.16

)
= <§§A)|m>A) ® |m')p + |ma ® (S§B>|m>3) (11.2.17)
= hm(|m>A® |m’>3)+hm’(|m>A® |m’>B) (11.2.18)
= hm+m')(jm)a®|m)p), (11.2.19)

)

thus the composite state is an eigen-ket of the total spin, with an eigenvalue A(m + m’

that is the sum of the individual eigenvalues.

11.3 Measurements

For the single-component case, we recall that the measurement process in quantum me-
chanics works as follows. If we have a state:

) = DA (Aile), (11.3.1)

and we measure the operator A with eigenkets |A;) and eigenvalues a; then we get the
result a; with probability P; = |a;|?. Also, after the measurement, the state collapses to
the measured eigenstate, |A;).

In the case of a two-particle system, there are two kind of measurements we can perform.
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11.3. Measurements

11.3.1 Global measurement

In the first case, we measure an operator T=T4s% TB, thus intrinsically defined to act
on the joint vector space, and in this sense corresponding to a measurement of the entire
system AB. Similarly to the standard situation, then we can diagonalize the operator:

T,|T;) = |T), (11.3.2)
in such a way that (assuming the operator has non-degenerate spectrum)

D ITN(T ), (11.3.3)
thus a measurement will yield the state |T;) with probability P; = [(T;])|?.

11.3.2 Partial measurement

In the second case, we can measure an operator that is defined only on one of the two
subsystems, for example T4. In this sense, we are performing a partial measurement of
the system, since we measure only the properties of one subpart, ignoring the rest of the
system.

We can rewrite a generic state of two particles as

) = > eyl e |TP) (11.3.4)

ij

= Z ITA) Zc”|TB (11.3.5)

Z i) ® |67), (11.3.6)

where we have defined

Zcij|T]B>. (11.3.7)

This expression then allows us to get a better intuition about what happens when we
measure only the first subsystem (A). In that case, assuming that we measure the operator
TA with eigenvalues t , it is postulated that after the measurement the system collapses
into

i) o [T © l¢7). (11.3.8)

The probability for this to happen is postulated to be

= (@P16F) = Y {TPID iy ITf). (11.3.9)
j 7

> el (11.3.10)

J

which is a generalization of what we have seen for the single particle case. We can also
explicitly compute the normalization of the state after the measurement, which reads

1

i) = \/<TA|TA><¢B\¢B>‘TiA>®|¢iB>' (11.3.11)
) \/ﬁ|TiA>®I¢iB> (11.3.12)
= Z RaiR \TA ® |TP). (11.3.13)
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11.3.3 Example: Spin Measurements

Let us consider again an example for two spins. We consider the state

Yy = %(|+>A®|—>B_|_>A®|+>B), (11.3.14)

and let us suppose that we are interested in measuring the value of the spin z on system
A. As always, this measurement can yield only two possible outcomes, m = +h/2 and
m = —h/2. This state is such that ¢,y =c__ =0and ¢, - =c_, = 1/V2.

The probability of obtaining the first outcome is Py = |eqy|?> + |cy_|?> = 1/2, and if
m = +h/2 the system then collapses into the normalized state

1
1/2
= [Ha®[-)p (11.3.16)

) (i |HVa®|-)B+cir|Ha®|+H)B) (11.3.15)

In the other case, it is easy to see that the system collapses into
W) = [-)a®|+)s, (11.3.17)
also with probability P_ = |c_4|? + |c__|? = 1/2.

11.3.4 Entanglement

In the previous discussion we have seen that the measurement of one part of the system
directly influences the outcomes of a measurement of the other part. This is one manifes-
tation of what is called quantum “entanglement”. More specifically, a state of two spins
is said to be entangled if its coefficients cannot be written as the product of two indepen-
dent coefficients. If instead the global wave function can be written as the product of two
wave-functions corresponding to the subsystems A and B, then we say that the system is
“separable”. For a separable state, the wave function then reads

s = D eylT) @ |TF) (11.3.18)
ij
= Y Pt o |1p) (11.3.19)

ij

(Z CgA)IEA>> @ | > PPy (11.3.20)
@ J

= ™) @ o). (11.3.21)

If a system is separable, we also immediately see that a measurement performed on one
part does not affect the other one. For example, if we measure T4 the system will collapse
into some state
i) = 1T ®1eP), (11.3.22)

with probability |C§A)|27 but the resulting state for the subsystem B will always be |¢(5)),
independently on the outcome of the measurement on A.

To explicitly determine whether a state is separable or entangled, we have to check
whether the matrix of coefficient factorizes or not. For example, for two spins the condition
of separability reads

(4) (B)

cty = ci'cy (11.3.23)
- = ciA)c(_B) (11.3.24)
ey = NP (11.3.25)
e = NP (11.3.26)
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which is verified if

CyyC_ —cy_c_y = deté (11.3.27)
_— (11.3.28)

Thus if the determinant of the coefficients c;; for the state in the composite basis is zero,
then the state is separable.
For example, our state

lp) = (Ha®|=)B—1-)a®[+)B), (11.3.29)

2

Sl

has a coefficient matrix

L 0
¢ = ({)5 . ) (11.3.30)
V2

whose determinant is non-zero and it is thus an entangled state.

11.4 The Einstein-Podolsky-Rosen Paradox

In 1935, Einstein, Podolsky, and Rosen (EPR) used the counter-intuitive features of quan-
tum entanglement to formulate a thought experiment known as the EPR paradox. They
tried to use this thought experiment to argue that quantum theory cannot serve as a funda-
mental description of reality. Subsequently, however, it was shown that the EPR paradox
is not an actual paradox; physical systems really do have the strange behavior that the
thought experiment highlighted.

The EPR paradox starts with considering an entangled state, for example the state we
have considered before

) = %(‘+>A®|_>B_‘_>A®|+>B)v (11.4.1)

for which we have seen that if we measure S, on the first spin (A) there are two possible
outcomes, both with the same probability of 1/2, and leading to the two states after the
measurement

W) = |+Ha®|-)s, (11.4.2)
L) = |-)a®|+)s. (11.4.3)

From these expressions it is clear that both |¢/,), [¢") are not only eigenstates of S“EA) @IB)
but also of 1) @ §(B)_ Tt then follows that if we now measure S, on the second spin (B),
we will find (with probability one) —i/2 when measuring the state [¢,) and +h/2 when
measuring the state [¢)” ). This thus tells us that the result of the first measurement (on
spin A) has influenced directly the result of a subsequent measurement on the other spin
B! In other words, if the result of the first measurement yields a +%/2 for spin A, then with
100% probability, a subsequent measurement of spin B will always yield a value of —h/2. If
the result of first measurement yields instead —h/2 for spin A, then with 100% probability,
the spin B will later have a value of +7/2. The Table 11.1 summarizes the situation.

The outcomes of this simple experiment are quite troubling if we recall that the axioms
of quantum mechanics tell us that the wave function collapses instantaneously. Moreover,
the instantaneous collapse of the wave function should happen regardless of the distance
among the two particles, A and B, in our case. This means that, for example, we could have
two particles described by the state [¢)) but very distant apart. We might have particle A
on Earth, and particle B on a planet orbiting Alpha Centauri, about 4 light years away from
us. This means that if an experimentalist measures particle A on Earth and finds +h/2,
then when the other experimentalist in Alpha Centauri measures immediately after its part
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Measure of SV | Outcome of meas. S%V Measure of 507 Outcome of meas. S¢°
Possibility 1 [Ha®|-)B One outcome [+)a®|—)B

(50% probability) Value +7/2 (100% probability) Value —h/2
Possibility 2 |—Ya®|+)B One outcome |—)a®|+)B

(50% probability) Value —7i/2 (100% probability) Value +7/2

Table 11.1: Possible outcomes when measuring first §§A> and then §§B> on the state |¢) =
% (+H)a®|=)B —|—)a ®|+)B). Overall, there are two possibilities, each happening with
a 50% probability.

of the system, the result obtained will be —fi/2. The experimentalist in Alpha Centauri
then will immediately know that the experimentalist on Earth has just found +7%/2 in their
measurement! This leads to a paradox, since the Centaurian seems to have learned about
something that has happened 4 light years aways at more or less exactly the same time that
thing has happened, and not after 4 years, the time that an electromagnetic signal sent from
Earth would take to reach Alpha Centauri. This experiment then seems to pose a serious
issue because it is apparently incompatible with the theory of special relativity, according
to which no information can travel faster than the light. This issue is also one of the main
arguments of the criticism against quantum mechanics posed by the EPR paradox.

But is what we have found really a way to transmit information between two points faster
than light? Unfortunately, it is not. Let us consider the case in which the experimentalist on
A plays a trick to their friend on Alpha Centauri and does not perform the measurement. At
the same time, B performs the measurement as always. In this case, the possible outcomes
for the B measurement are two, +/4/2, and they have equal probabilities to happen. If the
observer in B measures —h/2 could then wrongly infer that A has measured +%/2, as in the
case before, but in this case the measurement in A has not even happened! This means that,
in reality, the observer in Alpha Centauri has no practical way of determining wether the
observer on Earth has performed a measurement or not, thus this scheme cannot be used
as a way to transmit information. What happens instead is that in both cases (either A
measures or not), the observer in B will measure +%/2 or —h/2 with a 50 percent probability.
This discussion can be generalized also to measurements performed in other directions of
the spins, and more complex measurement scenarios and, in all cases we know, there is no
way to use quantum entanglement to transmit information faster than the light.

11.5 Bell’s Inequality

In addition to the lack of faster-than-the-light communication, John Bell also found out that
the experiment described above can be fully described in terms of some classical theory,
and that the concept of “action at a distance” implied by entanglement not even necessary
to describe the experimental results obtained on Earth and on Alpha Centauri! In this
alternative classical theory, we can imagine that the state of each of the two particles is
described, at all times, by some classical set of “hidden” variables h = [hy, ha, h3,...]
that fully contain the outcome of any spin measurement that will be done on the system.
Moreover, we assume the these hidden variables are “locally stored” in each particle, thus
a particle on earth would have its own set of hidden variables and a particle on Alpha
Centauri would have another set of hidden variables. In this “local hidden-variable theory”
the measurement of a spin on Earth then just corresponds to reading the value of the
corresponding components of the variables h. In this purely classical theory then there is
no intrinsic randomness in the measurement, as instead predicted by quantum mechanics.

For example, we can imagine that in practice the experiment we have described before,
involving particles A and B is created locally (say on Earth) and then the particle B is set
far apart, in a way careful enough not to break the properties of the physical state. If this
is the case, then we can think that at the moment of the local creation of the state, each of
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Possibility | h@ = [ 1 n{Y] [ n®) = (117 2P n{P)]
1 [+1,+1,+1] [-1,-1,-1]
2 [+1,+1, 1] [—1,—1,+1]
3 [+1,—1,+1] [—1,+1, 1]
4 +1,—1,—1 —1,+1,+1
5 —1,+1,+1 +1,—1,—1
6 —1,+1,-1 +1,—1,+1
7 —1,-1,+1 +1,4+1, -1
8 [-1,-1,-1] [+1,+1, +1]

Table 11.2: Possible outcomes of a local classical theory describing the measurements of
two spins along 3 directions, w1, Uz, Us.

the two particles picks up, randomly, some classical vectors

h = R, h?(fl)7 R (11.5.1)
B) _ B) 1(B) (B
h® = BB BB BB, (11.5.2)

whose components h,, = %1 fully describe the state of each particle. A measurement of S,
on the first particle would then be simply given by h/2 (h;A)), and so on. The variables h,,

themselves can be random, but their value is assigned once for all at the moment in which
we create the system, in a process we cannot control in detail, but entirely classical.

For example, to explain the experiment above, at the moment of creating the state we
assign a vector of random hidden variables to A and a vector if hidden variables to B. There
are just two possibilities for the assignment: the first possibility is that we have created a
classical pair with

hA =41, BB = 1, (11.5.3)

thus all measurements of S, will yield 4+%/2 over the first particle and —#/2 over the second
particle. The other possibility is that instead we have created a pair with

A =1, P =41, (11.5.4)

thus all measurements of spins will yield —%/2 over the first particle and +7%4/2 over the
second particle. When A and B are far apart, then it is clear that measuring S, it will be
always such that SgB) = —SgA)7 as also predicted by the quantum theory. The benefit of
this classical theory is that, quite clearly, implies that there is not faster-than-light travel
of information, since the information is just pre-shared, at the moment of the creation of
the state, on Earth.

Does this mean that all we have studied in this course is not very useful and that
instead everything is explained by some classical theory of hidden variables? Or, can we
find instead a situation that is not explained by this local, classical theory but that really
requires quantum mechanics? The answer is that we can, and it is due to fundamental work
of John Bell in the 1960s. To prove it, we will need to slightly generalize our discussion and
consider 3 general measurement axes, say 1, o, U3 that are not necessarily orthogonal.

11.5.1 Predictions of the classical theory

In the classical theory, when we measure a spin in the u; direction it means simply that we
are measuring the associated hidden variable, h;. Since we are still considering the case with
the constraint th) + hl(-B) = 0, we see that there are in total 8 possible outcomes predicted
by the classical theory, and summarized in Table 11.2. In general, at the moment of the
creation of the system, we assume that each of these 8 possibilities is realized with some
probability p;. For example, we can imagine of having created the pair h(4) = [+1,-1,-1]
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and h(P) = [—1,4+1, +1] with a probability ps. From the Table we can also deduce some
general results for the probabilities of observing some pair of values. For example, we can
concentrate the case in which every time we make a measurement, we choose to measure
two different directions for each observer, u(4) # w(B). In general then there are 6 possible
direction choices for the measurements that satisfy this condition:

A B A B A B
(@, u®) = (@, uf?), (W™ uf?), @S, W), (11.5.5)
A B A B A B
,(ug ),ug )),(ué ),ug )),(ué ),ué )). (11.5.6)

Among these 6, we can further restrict our attention to the probability that the outcomes
of measurements along different direction yield opposite signs. Take the case 2 in the Table,
here we see that out of the six possible measurement directions with different axes, only 2
out of six

A) , (B
W ns7) = ] (11.5.7)
A) (B
hsV mi?) = =4 (11.5.8)
also yield opposite outcomes (hEA) = —hﬁ-B)), thus there is a % probability that the outcomes

are anti-parallel. Cases 1 and 8 instead yield 6 out 6 measurements with opposite directions.
It is easy to check that for all the cases listed above it holds that

> <, (11.5.9)

Wl =

Popposite

thus the probability of getting opposite outcomes when measuring the spins along two
distinct directions u(4) # u(B) is at least 1/3 for the classical model. This inequality is one
simplified version of the inequalities deduced by Bell in his seminal paper of 1964.

11.5.2 Predictions of quantum theory

We have seen that a classical, purely local theory predicts the inequality (11.5.9). What
are the results that we expect from the quantum theory for a similar experiment where we
measure the components 1, Uz, 3 on each of the two particles?

To simplify, let us take the case in which 49 = 9,43 = Z and the first component is in
the 2z plane, rotated by an angle 6 with respect to the z axis:

(ty,U2,03) = (cosBZ+sinbz,q,2). (11.5.10)

The spin operators in these three directions then are

S = g (cos 05, +sinfs ) (11.5.11)
Sy = gy (11.5.12)
Sy = g (11.5.13)

Let us imagine that we measure S’éA) ® IB) and then ™) ® 5’§B). After the first measure-
ment, with probability 1/2 the state |1)) collapses into

W) = [-)a®|+)s. (11.5.14)

We then compute the expectation value of the second operator on this state,

R N h . . N
W |JM @ 8By y = 50050 (5(~16:|=)5) +sin0 (5(~|6-)5) (11.5.15)
= —gcosﬁ (11.5.16)
h  h__
= SPy- 2P (11.5.17)
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thus P — P~ = —cosf, but since P_ + P~ =1 we have that
P~ =(1+cosb)/2. (11.5.18)

Alternatively, with probability 1/2 the state |¢) collapses into
W) = [Ha®]-)s. (11.5.19)

We then compute the expectation value of the second operator on this state,

. N h . . A
@ [ TD © §P) |yt ) Zcos 0 (p(+|6.|+) ) +sin 0 (5(+|6,+)5), (11.5.20)

2
hi

~ 5 cosd (11.5.21)
h hi

= §Pj—§Pf. (11.5.22)

thus Py — P_ = cos#, but since Py + P_ = 1 we have that
Pr=(1+cosf)/2. (11.5.23)

thus the probability that the outcomes of the first measurement over A and the second
measurement over B yield opposite results is

1 1__ 1
P2 site(0) = §ij +5PT = 5(1 + cos ), (11.5.24)
and we clearly see that there are many value of # that violate Bell’s inequality, i.e. such
that

1
ngposite(e) < gv (11525)
for example for ngposite(%ﬂ) = % < % Then, if we perform a measurement at such an

angle (say at 27/3) and we observe a probability that is smaller than 1/3, we can conclude
that the classical theory of hidden variables is not able to explain the outcome. Quite
amagzingly, this kind of experiments have been performed several times now, starting from
the 1980s works of Alain Aspect and coworkers. In these experiments, typically done with
photons, it has been shown that Nature violates Bell’s inequalities and that therefore we
cannot explain the measurements just in terms of local classical variables! This is quite
good news, since it means that the time you have invested during this semester in learning
quantum theory is well invested, after all.

11.6 References and Further Reading

The discussion in this Chapter presents the mathematical and physical structure of quan-
tum systems with many components. Despite its fundamental importance for modern
applications of quantum mechanics, as well as for the fundamental meaning of the quantum
theory, this is a topic that is still relatively “young” and it is not well discussed in tradi-
tional textbooks. The interested reader can however look at Cohen-Tannoudji’s Chapter 2,
section F on the general aspects of tensor products. Instead, complement D;;; of Chapter
3 contains the discussion on partial measurements. Our discussion on hidden variables and
Bell’s inequalities is instead adapted (and simplified) from what found in Sakurai (3.10).
The reader can find more details and a slightly more general derivation in there.
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Chapter 12

Addition of Angular Momenta

In this Chapter we study the problem of adding angular momenta. The way quantum
angular momenta are added is more complex than what you are used to in the classical
world, and also leads to several counterintuitive phenomena.

12.1 Generalities

Given two particles with given angular momenta operators, say J (1) and J (2), we would
like to study the total angular momentum that these two particles have. The resulting
angular momentum is the sum of the individual momenta, however we have to be careful
when performing the sum and recall that the two operators act on distinct Hilbert spaces,
H(1) and H(2y. As discussed in the previous Chapter, the correct way of summing the two
operators is then to first “upgrade” them to act on the same Hilbert space H = H 1) @ H a),
and then consider the sum. The total angular momentum operator is then to be defined as

J = j()®1(2)+1()®j() (12.1.1)
= ( 1)I®I(2 Jr[(l) ®J(2)93,...,...) (12.1.2)
= (Jur Jy o). (12.1.3)

Moreover, the two angular momentum operators J (1) and J (2) act on different spaces thus
their components commute:

[j(l)a ® j(g),f(l) ® j(g)ﬁ] = 0. (12.1.4)

This is easily shown using the tensor product notation:

(fy @ Ji2ps) (Jyal®)) @ [9)s
(j“)a"ml) ® (j(2>6|‘1’>2> (12.1.5)
(j(l)a ® f(z)) ) ® <j(2)5|\11>2)

(j(l)am/)l) ® (j(2m|\11>2) . (12.1.6)

(T @ Js) (Jye @ 1)) 1)1 @)

(ju)a ® f(2>) (fu) ® j(z)ﬁ) [T)1 @ [T)2

Since it is quite cumbersome to carry around the tensor product symbols, in the following
we will use a slightly wrong but widely adopted notation, in which we write the total angular
momentum operator as

J = Jo+Jeo. (12.1.7)

This notation is compact but possibly also dangerous, because you might tempted to assume
(wrongly) that J(;) and J () act on the same Hilbert space, however we have stressed many
times now that this is not the case. So, just be careful when using this notation, and if
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in doubt, just go back to the tensor product one! In compact notation, the commutation
relations for the components of the angular momenta read

[yas Jps] = 0. (12.1.8)

As a consequence of this relationship, we can also easily verify that the total angular
momentum operator is still a valid angular momentum operator, in the sense that it satisfies
the usual commutation relations. We can check this explicitly:

JasJs] = [Tya + J2yas Jyp + J2)] (12.1.9)
= [ Josl + @a Jos] (12.1.10)
= iheapr 1)y + ih€asnd(2)y (12.1.11)
= iheapndy- (12.1.12)

Physically speaking, the total angular momentum operator then must be also associated to
a rotation operator

D) = e 7 (12.1.13)

The meaning of this rotation operator is clarified considering the product of the two rotation
operators acting on each of the two subsystems, namely

i i

D1)(8)Di5y(8) = e #lwmOemiIe 0 (12.1.14)
= o #I (12.1.15)

St

where in the last line we have used the fact that [j(l)a, j(g) 3] = 0, thus the product of the
two exponentials can be absorbed into a single exponential of the sum. From this expres-
sion we also deduce that the rotation operator associated to the total angular momentum
corresponds to taking rotations of the coordinate systems of both particles at the same
time,

D(@) = Dy(0) @ D (8). (12.1.16)

Moreover, since J is just another angular momentum operator, it will also have a set of
eigenvalues and eigenvectors of the “standard” form:

32|, m) P25 + 1)lg, m) (12.1.17)
Jlj.m) = hmlj,m). (12.1.18)

This expression however does not tell the whole story, since there are other quantities that
commute with J2 and J,. We can verify for example that the total momentum squared
commutes with the individual total momenta squared. To prove this, we start writing

a9 N N 2 N N 2 N R 2
iz = (Ju)z + J(Z)x) + (J(1>y + J(g)y) + (J(l)z + J(Q)Z) (12.1.19)
= j?1) + j?z) + 2j(l)zj(z)z + 2j(1)zj(2):1; + 2j(1)yj(2)y (12.1.20)
~ ~ ~ ~ 1 ~ ~ ~ ~
_ 2 2 + _ + _
= Jo e +2J0:de): t 5 (J(l) + J(l)) (J(Q) + J(2)) +  (12.1.21)
1 ~ ~ ~ ~
Z _ - + 5
- (& = 90) (6 - Ja) (12.1.22)
= Ity + 3+ 20y des + A5 G+ A0 b, (12.1.23)
thus since [j%l), j(l;)] = [j%l), j(zl)} = 0, and similarly for the particle 2, we have
32,3t = o, (12.1.24)
[32,3%) = o. (12.1.25)
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Moreover, two individual squared momenta also commute with the total J %, since

[JZ)J(I)} = [J (1 + J2)z>~](1)] (12.1.26)

= O7 (12.1.28)

[J., 3% = [j(1 + JQ)Z,J(Q)} (12.1.29)

0. (12.1.31)

This means that we have four mutually commuting quantities, J2 J (1),.]%2) and J. whose
eigenvalues can be used to index the eigen-kets of the total momentum such that

I2(j1, jai j,m 12§(3 + Dljr, j2: g, m), 12.1.32

hm'jlujQ;j7m>7
R2j1(j1 + 1)\j1, jo3 4, m),
R2ja(j2 + 1)|j1, J25 4, m).

)
Jz|j17j2;j7 m>
32 li1 das . m)

)

3%y linsdas dm

12.1.1 Tensor-Product Basis

While the representation we have introduced above is the “standard” representation of the
composed momenta, it is not very convenient to work with. It is in fact more natural
to introduce basis states that are simultaneous eigen-kets of the individual components,
and that we have already analyzed in the previous Chapters. We therefore consider the
tensor-product basis states

|71, 725 M1, ma) J1, m1) @ |j2, m2), (12.1.36)

that are simultaneous eigen-kets of J %1),3 %2) ,j(l)z,j(g)z. These four operators are obviously
mutually commuting, since operators with different particle indexes act on different Hilbert
spaces (thu§ commute) and same-particle operators commute as well, i.e. we already know
that [J%l)7 Jy:] = [J%Z), J(2)-] = 0. The basis eigen-kets we consider then satisfy

IR ldns dasma, me

325 ld1s dasma, me

R21(j1 + 1)|j1, jios ma, ma),
B2 ja(jo + 1)|j1, jos ma, ma),

hma g1, jo; m1, ma),

12.1.37
12.1.38
12.1.39

) ( )
) ( )
Jyalgn, josmi,me) = ( )
) ( )

hima|ji, jo; m1, ma). 12.1.40

j(2)z|j17 J2;my, ma

While this basis is convenient, the tensor-product states however are not eigenstates of the
total momentum squared. This is because we cannot diagonalize at the same time the four
operators above (J(l),J 2) ,J(l)Z,J(Q)Z) and also J2. This can be checked noticing that for

example J2 does not commute with the single-particle J. operators:

U d? = e 3hy + 3% + 2002 de: + I8 Jo) + J0)Jh) (12.1.41)
= [j(l)Z7J(1)J(2)+J(1)J ] (12.1.42)
= Iyl I + e Jg) g (12.1.43)
= hJ(z)J() hJ(1)J(+) (12.1.44)
# 0 (12.1.45)

Nonetheless, we can still use this convenient basis to express the eigen-kets of the total
angular momentum squared, i.e. we can develop the eigen-kets as

m) = (12.1.46)

> Vs dasma, ma) (ju, ja; ma, malii, ja; 4, m).-

mima2

|j1aj2;j7
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12. ADDITION OF ANGULAR MOMENTA

The coefficients of this transformation,
jm

Cj1m1j2m2 = <j1,j2;m1,m2|j1,j2;j,m>, (12.1.47)

are called CLEBSCH—GORDAN coefficients an play the vital role of connecting the two rep-
resentations.

12.1.2 Properties of Clebsch—Gordan coefficients

There is a number of important properties of these coefficients that we can already deduce
at this stage. First of all, the coefficients vanish unless

[ = s} 12149

This can be proven noticing that
(jz —Jay. — j@)z) i, daidym) = 0, (12.1.49)
thus multiplying this equation by (j1, j2; m1, ma| we have
(m —my —m2)(j1, jo; m1, m2lj1, j2; ,m) = O, (12.1.50)

implying that the Clebsch-Gordan coefficients (appearing in the left hand side of this Equa-
tion) must vanish unless m = my +my. This condition is quite natural, since it tells us that
the total J, has an eigenvalue which is the sum of the two individual eigenvalues of J(y).
and j(2)z~

The other important condition is on the possible values that j can take, as it turns out
that

] 1 = Jol <7 <j1+ 72 (12.1.51)

In order to see why this is the case, remember that

—J< m <j (12.1.52)
1< mi1 < (12.1.53)
—Jj2 < Mz <o (12.1.54)

Now, if we set m = j, and j; = my, the inequality for mo (which is mo = m — mq, as we
have seen before) becomes:

—J2

J=i1 <Jo (12.1.55)
J1—J2 '

J < J1+Je (12.1.56)

IA N

Also, if we take m = j and j, = mg, the inequality for m; (m; = m — ms) becomes

J=J2 <h (12.1.57)
J o <t (12.1.58)

—J1
Je— N

[VARVAN

thus we conclude with Eq. (12.1.51).

12.1.2.1 State counting

An alternative way of convincing ourselves that Eq. (12.1.51) must be true is by counting
the bases states in the two representations. In other words, we can count how many basis
states |j1, jo; m1,ma) = |j1m1) ® |jams) exist and how many states |j1, j2; 4, m) exist. In
the first case, we know that the total number of states is given by the product of the number
of states spanned by the individual kets that are taken into the tensor product, thus

Nr = (21 +1)(2j2+1). (12.1.59)
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12.2. Two Spins

In the other case, we know that for each j there are 25 + 1 states and if the inequality, Eq.
(12.1.51), is satisfied we have that j must run between (j1 — j2) and (j1 + j2), assuming, as
we can always do, that we pick j; > jo. This means that the total number of states in the
second count is (the full summation of the series is left as an exercise):

Ji+J2

Ny o= > (25+1) (12.1.60)
J=Jj1—J2

= (21 +1)(2j2+1), (12.1.61)

thus we find the consistent result N; = Nyj.

12.1.3 Explicit form of the Clebsch—Gordan coefficients

Determining explicit and general expressions for Clebsch—Gordan is a time consuming and
not very productive exercise that is still reason of nightmares for generations of students
who were forced to derive them. We just quote here the final result, so that you can
understand the reason of such nightmares:

jm = 4 2] + 1
prdae SN G o = DM = g2 )02 = G+ )+ G2+ 1)

XA/ (G +m)(G —m)!(j1 + ma)l(j1 — m1)!(j2 + m2)!(j2 — ma2)!
k(i +Jd2—J\ [ —Je+3J Jo—J1+7J
X %:(—1) < ) > (j1 el k) <j2 o k> (12.1.62)

We also recall here a few more properties of the Clebsch-Gordan coefficients. They are
real-valued by convention, and they satisfy the closure conditions

X
!

jm jm _
Z Cj1m1j2m20j1m’1j2m’2 - 6m17m/16m2,m’2 (12163)
jm
jm j/m/ -
Z Cj1m1j2m20j1m1jgm2 - 5j7j/5m,m’~ (12164)

myimsz

12.2 Two Spins

We first consider a simple example of the formalism developed so far, where we can easily

find an explicit representation for |ji,ja2;j,m) bypassing the explicit calculation of the

Clebsch—Gordan coefficients. The example consists in forming the total angular momentum
resulting from two spins 1/2. Formally, we form the vector operator

S = Su +Sw (12.2.1)

= (5,5,,5.). (12.2.2)

The “convenient” basis in this case is then simply

|s1,82;m1,ma) = |[s1,m1) ® |s2,ma), (12.2.3)
‘m17m2> = |:|:7:l:>a (1224)

where in the last line we omitted the s; = s3 = 1/2 quantum numbers and just concentrated
on the two possible values of m; = £1/2 and my = £1/2. In total then we have four states

1) |+ +) (12.2.5)
2) = [+-) (12.2.6)
13) = |—+) (12.2.7)
14) = |—-). (12.2.8)



12. ADDITION OF ANGULAR MOMENTA

In order to find the states |j1, j2; 7, m) in the “standard” representation, we start by explic-
itly computing the total spin squared

§? = 8% +8%) +250):80): + 54,85, + 50,55, (12.2.9)

3 . . O N .
1732 <I(1) + 1(2)) +2851)2502): + 88z + 51,5 %)- (12.2.10)

From this expression we see that the last two terms are vanishing when applied to the states
| ++) and | — —) since, for example,

SHl++) = S ly (+h®l+)) (12.2.11)
= (SH)I+>1)®I+>2 (12.2.12)
= 0 (12.2.13)

Furthermore, we can easily verify that these two states are eigenstates of S2?, since

S?++4) = <ih22+2h2;;> |+ +) (12.2.14)
— R4 4), (12.2.15)
§?——) = <ih22 + 212 (;) (;)) | — =) (12.2.16)
— oR?— -, (12.2.17)

with eigenvalue 2A2. However we know from the general theory that the eigenvalues of S2?
are also equal to h?s(s+1), thus we conclude that these two states have s = 1. We have then
successfully found the first two states we were looking for in the standard representation:

li=1,m=1) = |+4) (12.2.18)
lj=Lim=-1) = |—-). (12.2.19)
From the general theory of angular momentum, however we know that the j = 1 states

always come as a triplet of states (m = —1,0,1), thus there must be still a missing state
we haven’t found yet with j = 1, m = 0. In order to find it, we apply the lowering operator

§° = S —if, (12.2.20)
= g(l)m + 5(2)30 - ig(l)y - i§(2)y (12.2.21)
= S(‘l) + S(_Q) (12.2.22)

to the state with highest m:

STli=Lm=1) = S5l++)+85]++) (12.2.23)

hWiG+1) —mm—1)j=1m=0) = h/si(s1+1)—mi(mi—1)[—+) +
+hy/59(s2 + 1) — ma(mg — 1)] +(32.2.24)
V2[j=1m=0) = |[—+)+]|+-). (12.2.25)

From the last line then we can read out the third state with j = 1,m = 0 we were missing
before:

1
V2

To find the last and final state (remember that we started with four states for the “con-
venient” basis, so we need to find also 4 states in the standard basis) we realize that the
missing state must be the one with |j = 0;m = 0) (that is the only allowed value of j

j=1Lm=0) = (=4 +1+-)).
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remaining, from the inequality condition (12.1.51)). This state is found imposing that it is
orthogonal to all the other states we have already found. We start by imposing that it is
orthogonal to the other state we found for m =0 :

(j=0,m=0[j=1m=0) = 0, (12.2.26)

and we obtain:
1
V2

It can be easily checked that this state is also orthogonal to all the other states previously
found, just because they carry different m thus all products such (— — | — +) etc. give
zero. To summarize, we have found the four states we were looking for in the “standard”
representation:

li=0m=0) = (=4 =1+=)). (12.2.27)

y = |++) 12.2.28
1
) = 12.2.29
)
)

(I=+H+[+-),
= |=-) 12.2.30

1
E(I*H*Hﬂ),

with the first three having j = 1 (also known as “triplet” of states) and the last one with
j =0, also known as “singlet”.

(
(
(
(12.2.31

)
)
)
)

12.3 Adding Spin and Orbital Momentum

Another example we propose here is the important case of adding spin and orbital angular
momentum degrees of freedom. For example, we can form the total angular momentum of
a particle with spin:

= +S (12.3.1)
= Lols+I;®8, (12.3.2)
where the second line once more emphasizes that the two operators act on different Hilbert
spaces. Notice that actually in this case the first operator (the orbital angular momentum)
acts on an infinite Hilbert space, whereas the spin operator acts on a finite vector space.

As before, we can interpret the resulting rotation operator as just the product of two
independent rotations on the respective degrees of freedom:

D) = exp (—;L : 0) ® exp (—;S : 0) : (12.3.3)

A typical way of writing the wave function of a particle with spin (say, an electron) is by
means of the tensor-product basis, |r) ® |s,m) such that the state vector is

(r|@ (s,m]) [¥) = W(r,m), (12.3.4)

where the first variable r = (x,y, z) is clearly continuous, whereas the second one m = +1/2
is discrete. An alternative way to write the state is as a vector of two continuous-space

wave-functions:
( ifg; ) (12.3.5)

in such a way that ¥4 (r) = ¥(r,£+1/2). From these notations, the meaning of ¥4 (r) is
quite clear, for example |¥ (r)|> would give the probability density of finding a spin “up”
at position r. This representation is also called “spin-orbital”.
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12. ADDITION OF ANGULAR MOMENTA

12.3.1 Standard basis

The spin-orbital representation is typically enough for most applications, however we mlght
be interested in finding also the standard representation involving the eigenvalues of J2, J.,
S2, L2. Similarly to what done for the general case, we will call this basis

L, 5;5,m), (12.3.6)
whereas the “convenient” tensor-product basis is given by
[1,my, s,ms) = |l,my) @ |s, ms). (12.3.7)

In the following we will omit the explicit value of s = 1/2 and [ from all kets, since they
are fixed everywhere. From the general inequality, Eq. (12.1.51), we know that there are
only two allowed values for j, namely jmax =1+ 1/2 and jiin =1 — %

As also seen for the case of two spins, the state with jax = Mmax = [ + 1/2 is always
easily written in terms of tensor product basis:

=14+1/2m=141/2) = |I,) ® |+). (12.3.8)

To obtain the remaining states in this “multiplet” of states with j = [41/2, i.e. all the other

states with m = (1+1/2,1-1/2,1-3/2,---—1+4+1/2, —l— 1/2) we apply total spin lowering

operator J~ = L~ +5 and recall the 1dent1ty J7|3,m) = hy/§(G + 1) —m(m — 1)|5,m—1)
giving

J7li=1+1/2m=1+1/2) = W2A+1j=1+1/2,m=1-1/2) (12.3.9)

= L@+ +|L1)© S |[+) (12.3.10)

= n(VALI-1) @ +) + L1 @ ]-)), (12.3.11)

li=14+1/2,m=1-1/2) = H21+1|ll H®[+) +

)@ |-). (12.3.12)

thus

— |
+ 21+1"

To generate all the other states we apply again and again J-, finding the general relation
(left as an exercise)

. [l+m+1/2 1
l7=1+1/2,m) 1 |1, m 2>®I+>+

l—m+1/2 1
—i = —). 12.3.13

T ms Sy e 1) (123.13)
Once determined all the states with j = [4+1/2, we then go on with states having j =1—1/2.
The highest m state in this multiplet is, in general, a linear combination of spin states with
up and down and the appropriate value of m; such that m; + s, = m, thus m; =1 —1 or
mp; = l:

i=1-1/2,m=1-1/2) = ec|lLll-1)@+)+el,l)o|-), (12.3.14)

where the two coefficients are to be determined. However, we have already found a state
with m = [ — 1/2 before, in the multiplet with j = [ 4+ 1/2. We can then find the two
coefficients imposing the orthogonality condition

G=1+1/2m=1-1/2j=1-1/2,m=1—1/2) 0, (12.3.15)

21 1
= . 12.3.1
Cl\/2l+1+02\/21+1 0 (12.3.16)
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A simple solution (also recalling that we must have |c;|? + |c2|? = 1) is to take ¢; = 4/ ﬁ
and ¢cg = — %}rl, therefore
li=1-1/2m=1-1/2) = L\l I-1)®|+)+
J= ) — - 2l+1 )
21
-/ |, —). 12.3.1
Y (12.317)

With this state at hand we can either further apply J~ and generate all the states in the
multiplet with j =1 — 1/2, or impose that the other states in the multiplet are orthogonal
to those we already generated with the same values of m:

G=1l+1/2,mlj=1-1/2,m) = 0, (12.3.18)
finally yielding
) l—m+1/2 1
i=1-1/2,m) L m— Sy [+ +

[[vmt1/2 1

12.4 References and Further Reading

The discussion in this Chapter is mainly adapted and simplified from Sakurai, Chapter
3 (Section 3.8). Cohen-Tannoudji’s book discusses the addition of angular momentum in
Volume 2 (Chapter 10). The complements to that Chapter ( especially Ax andBx) contain
a lot of details on the Clebsch-Gordan coefficients and also some additional examples that
might be useful to gain further technical knowledge of the general topic.
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